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Abstract—Lack of an accurate and low-cost method to recon-
struct indoor maps is the main reason behind the current spo-
radic availability of digital building floor plans. The conventional
approach using professional equipment is very costly and only
available in the most popular areas. In this paper, we propose
and demonstrate CrowdMap, a crowdsourcing system utilizing
sensor-rich video data from mobile users for indoor floor plan
reconstruction with low-cost. The key idea of CrowdMap is to
first jointly leverage crowdsourced sensory and video data to
track user movements, then use the inferred user motion traces
and context of the image to produce an accurate floor plan. In
particular, we exploit the sequential relationship between each
consecutive frame abstracted from the video to improve system
performance. Our experiments in three college buildings show
that CrowdMap achieves a precision of hallway shape around
88%, a recall around 93% and a F-measure around 90%. In
addition, we achieve on average 9.8% room area error and on
average 6.5% room aspect ratio error. The evaluation result
demonstrates a significant improvement of accuracy compared
with other crowdsourcing floor plan reconstruction systems.

I. INTRODUCTION

A building floor plan succinctly illustrates spatial correla-

tions of rooms, hallways and other features of the architecture

from a top-down view over a floor. It plays an essential role

in many indoor mobile applications, such as localization and

navigation [1]–[3]. However, unlike outdoor environment, ac-

quiring digital indoor floor plan information is very challeng-

ing. The state-of-the-art Google Indoor Maps [4] only have

10,000 locations available on-line, which is not in a position to

compete with the total number of indoor environments around

the world. The complexity of the indoor environment is the

major obstacle to achieve ubiquitous coverage. Existing cen-

tralized collection and on-site calibration techniques demand

professional devices and multi-party coordination, which are

time consuming, inconvenient and costly.

Recently, the wide availability of smartphones and wearable

devices (e.g. google glasses) equipped with built-in visual and

inertial sensors makes the crowd easier than ever to devote

themselves to crowdsourcing. Following this trend, there have

been several studies trying to explore the possibility of using

crowdsourced data to generate an indoor floor plan automat-

ically. Among others [5]–[10], CrowdInside [10] first utilizes

crowdsourced inertial sensory data to automatically construct

user motion traces, and then aggregate the information to

reconstruct indoor pathways. Jigsaw [11] takes one step further

as their method leverages both image and inertial data to

reconstruct an indoor floor plan.

However, current crowdsourcing floor plan reconstruction

systems are not able to produce accurate enough results. This

is partially due to the fact that most of existing indoor floor

plan reconstruction systems heavily rely on sensory data [6],

[7], [10], [11], which is only able to provide users’ mov-

ing information for an unknown indoor space. For instance,

CrowdInside [10], Walkie-Markie [6], Jigsaw [11] and the

work in [7] all primarily depend on aggregated user motion

traces derived from inertial data to determine the shape of

hallway and room. The premise of their work is that users

would be able to move across all edges and corners in an

indoor environment. Due to the fact that the edge of an indoor

scene is usually blocked by furniture or other objects, that

assumption, however, may not be realistic in practice when

reconstructing a complex indoor environment like rooms.

Moreover, some restricted areas in an indoor environment are

also inaccessible for most of the users, which may lead to

some significant errors for the crowdsourced results. Unlike

the sensory information, visual information should preserve

more context information for an unknown indoor environment,

such as the geometric information, color information, lighting

conditions and text information. Therefore, visual informa-

tion based approaches may provide more accurate geometric

(shape, coordinates and orientations) information compared

with the sensor-only approaches.

In this paper, we propose CrowdMap, an accurate indoor

floor plan reconstruction system based on sensor-rich videos.

CrowdMap generates indoor floor plans by cross-fuse visual,

inertial (gyroscope, accelerometer and compass) and spatial

(geo-location) information crowdsourced from the users. We

jointly utilize computer vision and mobile techniques in a com-

plementary way to manage the noisy crowdsourced data. The

key idea of our system is to leverage the sequential relationship

between each consecutive frame of the crowdsourced video.

We employ advanced computer vision algorithms, which are

able to furnish the consistent video frame relation to generate

accurate spatial information of the indoor environment. Com-

pared with uncorrelated images, CrowdMap shows that the

spatio-temporal continuous video frames are able to provide

more valuable information with the same amount of data in

an indoor crowdsourced setting.

We solve two challenges in the design of CrowdMap. First,

the sensor-rich videos uploaded by the crowd are usually
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not captured with floor plan generation in mind, since we

cannot assume that every user is professionally trained to our

crowdsourcing task. We solve this challenge by i) utilizing

inertial sensor and visual data to track the position of the

smartphone’s camera and ii) designing a multi-layer system

based on the “divide and conquer” method to gradually filter

out unqualified data. Second, existing crowdsourcing based

floor plan reconstruction approaches are unable to provide

room layout with a good quality. We solve this challenge by

leveraging the consecutiveness in the sensor-rich video data to

generate 360◦ room panorama. Then, we process the panorama

to generate room layout with a high accuracy.

The proposed CrowdMap uses a combination of appropriate

computer vision and mobile sensing techniques to accurately

reconstruct indoor floor plans. We summarize our contribu-

tions as follows:

• We design crowdsourcing data collecting tasks to collect

several forms of geo-spatial, visual and inertial data from

the crowd.

• We select suitable computer vision techniques to exploit

the sequential relationship from the video data and con-

sequently improve the quality of the result.

• We develop a prototype CrowdMap system and evalu-

ate it on a real-world scenario. The result shows that

CrowdMap achieves a hallway shape precision around

88%, a recall around 93% and a F-measure around 90%.

Moreover, we achieve on average 9.82% room area error

and on average 6.5% room aspect ratio error. These

evaluation results demonstrate a significant improvement

in accuracy compared with other crowdsourcing floor

plan reconstruction systems.

The rest of the paper is organized as follows: We begin

with the problem formulation in Section II, followed by the

design details in Section III. Section IV and V describe the

implementation of a prototype of CrowdMap and the evalu-

ation procedures, respectively. The limitations of CrowdMap

are discussed in Section VI. In Section VII, we compare our

work with related works. Section VIII concludes this paper.

II. CROWDMAP: PROBLEM FORMULATION

CrowdMap leverages crowdsourced sensor-rich videos to

reconstruct accurate indoor digital floor plans without any

building information known as a priori. The system consists

of two components based on client-cloud platform structure.

The first component is mobile front-end which allows user

to contribute the spatial, video and inertial data by capturing

sensor-rich videos. The other component is cloud backend

which processes the received crowdsourced data and recon-

structs floor plan.

a) At the mobile front-end, we design two data-collecting

tasks to collect the spatial, video and inertial data from each

individual user. The inertial and video data gathered from Stay-

Rotate-Stay (SRS) and Stay-Walk-Stay (SWS) aim to track

user movements and generate user trajectories.

b) At the cloud backend, we divide the floor plan generation

process into three sub-processes and address each of them
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Fig. 1. The architecture of CrowdMap.

separately. The first sub-process is in charge of the indoor

pathway reconstruction. It manipulates the sequence-based

key-frame matching algorithm to aggregate user trajectories

uploaded by the mobile front-end. We then reconstruct the

indoor pathway by projecting the aggregated trajectories to an

occupancy grid map. The purpose of the second sub-process

is to reconstruct the room layout. It utilizes crowdsourced

visual data to generate room panorama and applies advanced

computer vision algorithm to process it. The panorama is a

360◦ image, which contains enough context information to

generate accurate room layout. The third sub-process combines

the indoor pathway and room layout to completely reconstruct

the indoor floor plan.

Furthermore, the CrowdMap system architecture can be

categorized based on its functions. As shown in Fig. 1,

CrowdMap consists of four modules:

• i) crowdsourced data collection module (Section III. A)

• ii) indoor path modeling module (Section III. B)

• iii) room layout modeling module (Section III. C)

• iv) floor plan modeling module (Section III. D)

Similar to Jigsaw [11], CrowdMap is a proactive crowdsourc-

ing system. We assume that users actively get involved in the

data collecting tasks. One example could be: a user opens

our mobile application and inputs the floor information (task

1); starts capturing the room environment by spinning his/her

body (SRS task); then, walks towards the hallway (SWS task).

We assume that several incentive mechanisms will be further

developed before deploying our system in reality.

III. CROWDMAP: DESIGN DETAILS

A. Crowdsourced Data Collecting Module

We pay careful attention to the design of the CrowdMap

mobile front-end, and thereby, creating a prototype of the
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Fig. 2. Video and inertial data collection task: (a) Stay-Rotate-Stay (SRS)
(b) Stay-Walk-Stay (SWS)

application that runs on the Android operating system. Users

are required to download and install our application on their

mobile devices before they access our service. To crowdsource

several forms of geo-spatial information (such as building

location and floor number), visual and inertial data from the

user, we design the following two data-gathering tasks:

Task 1: Geo-spatial Information Acquisition. In order to

obtain the building location, we leverage the last known GPS

position to estimate the user’s current location. A pinpoint will

be shown on a map to indicate the last known GPS location.

If it is incorrect, user can correct it by simply dragging and

dropping the pinpoint inside the outline of the building. Once

finished, we prompt a new window asking users to input their

current floor number. The geolocation data helps CrowdMap

to uniquely identify the floor in a specific building. Moreover,

there is no additional infrastructure needed during the first

task.

Task 2: Video and Inertial Data Collection
In this task, we allow smartphone users to utilize our mobile

application for capturing their preferred indoor scenes using

the back camera. Our mobile application records both the

video data and inertial sensor data simultaneously. During

the capturing phase, the user can either move or rotate their

body freely. Since the video data taken by the phone highly

depends on the height of the user as well as the angle of taking

the video. It requires the user to hold the phone in front of

their free hand and keep the phone steady while capturing.

We further decompose this task by designing two micro data-

gathering tasks and modeling each of them separately (shown

in Fig.2):

• Task 2.a Stay-Rotate-Stay (SRS): In this micro-task,

the user records the video from location A, and then

holds the smartphone and spins the body for a certain

angle ω. According to [2], [3], the value of ω is accurate

by reading the relative orientation changes from the

gyroscope.

• Task 2.b Stay-Walk-Stay (SWS): In this micro-task,

the user records the video from location A, and then

holds the smartphone and walks to another location B
over a period of time t. This movement can be described

using a triple (xi, yi, ti) to represent the location (xi, yi)
in a local coordinate system for the user at time ti.
Therefore, through using a sequence of such triple

{(x1, y1, t1), (x2, y2, t2), ..., (xi, yi, ti), ..., (xn, yn, tn)},
we can describe the movement of the user, which is

called as the trajectory of the user.

The walking distance |AB| is calculated by the step

counting method, which is widely applied in existing

works [2], [6]. In addition, the direction change of each

step Δω is calculated by jointly using compass, gyro-

scope and accelerometer [12]. Thus, by using the inertial

sensor data, we are able to reconstruct the trajectory of

the user when they perform the SWS task.

B. Indoor Path Modeling Module

In order to reconstruct the path of the building floor, we

first aggregate multiple user trajectories generated from the

crowdsourced data collection module (SRS and SWS task)

through the key-frame based user trajectories aggregation

algorithm. Then, we reconstruct the floor path skeleton using

the floor path skeleton reconstruction algorithm.

B.I Key-frame Based User Trajectories Aggregation: We

aggregate multiple user trajectories using the video frames

as “anchor points”. The main challenge of this module is

to achieve robust performance across a large variety of the

frames that captured by different users, with different smart-

phone models or in different indoor environments. In order

to overcome this challenge, CrowdMap adopts a sequence-

based approach that we use multiple video frames along the

user trajectory to aggregate multiple user trajectories. In other

words, the aggregation of two or more user trajectories is

determined from multiple frames over certain period of time

instead of single frame comparison.

Video Key-frame Selection. During the early stages of our

experimentation, we found that the bottleneck of CrowdMap

is the process of crowdsourced video data, especially when

using the SURF [13] algorithm to match two video frames.

Therefore, this single step approach is not feasible for handling

a rapidly growing influx of crowdsourced data. In order to

remove the extremely similar frames and keep the frames with

noticeable camera motion, we adopt the Histogram of Oriented

Gradients (HOG) [14] descriptor computing algorithm.

After applying the HOG algorithm, the pairs of feature

points in different gradient directions are filtered out. Next, we

quantify the similarity value of two consecutive frames by the

normalized cross-correlation score Scc. To remove extremely

similar frames, we only keep the sequence of frames that have

the cardinality above a given threshold hg . The remaining

frames are called the key-frames.

Key-frame Comparison. We conduct video frame fea-

ture detecting and matching for the key-frame comparison.

CrowdMap adopts a hierarchical approach, which takes place

in two steps. In the first step, CrowdMap uses three off-the-

shelf computer vision algorithms to compare two candidate

video frames from three aspects, which are Color Indexing

Histograms [15], [16], Shape Matching [17] and Wavelet

Decomposition [18]. We assign a weight for each of the

algorithm and use a linear combination of the weights to

calculate the similarity score. If the similarity score S1 is less

than hs, these two key-frames are not identical, and thereby,

the two trajectories cannot be merged. This is significant
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Fig. 3. Floor plan reconstruction process: (a)-(d) Floor path skeleton reconstruction, (e) room layout reconstruction, (f) the final floor plan

to prevent wrong trajectories aggregation, which impairs the

accuracy of the whole system. In the second step, we select

the state-of-the-art SURF [13] descriptors to precisely match

two candidate key-frames. SURF algorithm is robust and fast

enough in real-time processing. In our model, if it is given

a pair of key-frames (I1, I2), we perform a match in the

following manner: i) Extract two sets of descriptors {F1} and

{F2} through the SURF algorithm. ii) Match these descriptors

by using algorithm 1:

Algorithm 1 Key-frame Comparison Algorithm using SURF

Feature

Given two sets of SURF descriptors {F1} and {F2}
for ∀f1 ∈ {F1} do

f2 ⇐ NearestNeighbor(f1, {F2})
f∗ ⇐ NearestNeighbor(f2, {F1})
if f∗ == f1 then

if d(f1, f2) < hd then
add pair (f1, f2) to array A

return A

Where function NearestNeighbor(f, {F ′}) returns de-

scriptor f ′ ∈ {F ′} nearest to given f . We use Euclidean

distance d as a distance metric and set distance threshold hd for

computing the quantity of good matches. Then, the similarity

score is calculated using equation 1.

S2(F1, F2) =
|A |

|F1

⋃
F2| (1)

As shown in equation 1, the distance is measured by comput-

ing the similarity score of sets F1 and F2. We consider F1

matches with F2, if the similarity score S2 between two sets

is larger than threshold hf .

Sequence-based Aggregation. In our sequence-based ag-

gregation algorithm, we use multiple key-frames to determine

whether the two user trajectories can be merged. Our aggre-

gation algorithm is based on the assumption that the user does

not abruptly increase her walking speed above a certain limit.

According this assumptions, if there is a match between the

two trajectories generated in the same floor, there should be a

common path between them in a high probability. Hence, we

use the longest common subsequence to capture this notion.

Let Ta and Tb be the two user trajectories with length of i and

j, respectively. We define the longest common subsequence

metric as follows:

L (Ta,i,Tb,j)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if i = 0 or j = 0;

1 + L(Ta,i−1,Tb,j−1),

if d(�ta,i,�tb,j) ≤ ε and |i− j| < δ;

max(L(Ta,i,Tb,j−1), L(Ta,i−1,Tb,j)),

otherwise;

where parameter δ represents the maximum length dif-

ference between two user trajectories and ε is the distance

threshold. The similarity score S3 for two user trajectories

based on [19] is defined as follows:

S3 = maxf∈F
L(Ta, f(Tb))

min(i, j)
(2)

similar to [19], F represents a set of all possible translations.

Two user trajectories are able to be aggregated only if the

similarity score S3 for Ta and Tb is larger than hl.

B.II Floor Path Skeleton Reconstruction: One common

technique for indoor floor path representation is to use the

occupancy grid [20] to approximate the environment. The

occupancy grid contains a grid of square cells with fixed

dimensions, which discretize the continuous 2D indoor space

to represent the indoor path. Each cell is assigned with a

probability value that represents how accessible the location

is.

CrowdMap leverages the accessible cells to express the path

skeleton of each floor. Base on this model, the floor path
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Fig. 4. The model of overlap and cover between two key-frames f1,f2

skeleton reconstruction processes can be further divided into

six steps. First of all, we initialize the occupancy grid map as

a matrix full of zeros. Second, we map the aggregated user

trajectories onto the grid map to estimate the access probability

of each cell. If a cell is mapped by more than one trajectory,

the probability of the cell increases. Third, a binarization

technique [21] is applied to automatically calculate an optimal

threshold, and then set the threshold to every cell ci,j (i.e. in

the ith row and jth column of the occupancy grid map) in

the map to filter out cells with low access probability. This

step is used for eliminating the errors and outliers introduced

by the crowdsourced data (shown in Fig. 3a). To further mark

the boundaries of the floor skeleton, in the fourth step, we

choose the α-shape algorithm [22], which uses Delaunary

triangulation to estimate shape (shown in Fig. 3b). After

that, we apply an α-threshold hα to find the the regularized

boundaries of the indoor path skeleton (shown in Fig. 3c).

In the last step, we normalize the regularized boundaries

by repairing the unconnected paths. The output result is the

reconstructed floor path skeleton (shown in Fig. 3d).

C. Room Layout Modeling Module

In this module, we utilize crowdsourced images to create

the panorama for each room, and then use computer vision

techniques to process the panorama, and thereby, generate the

room layout.

C.I Indoor Panorama Generation: In indoor path modeling

module, we aggregate multiple users’ trajectories using video

key-frames and generate floor path skeleton based on the

occupancy grid model. After aggregation, it is possible to have

more than one key-frames for a certain cell Ci,j on our path

skeleton. This is due to either i) user records the scene through

SRS micro-tasks at that position or ii) two or more user

trajectories are merged at that position. The key-frames inside

the cell Ci,j should be geographically close to each other.

Therefore, we can utilize a point panorama model to approxi-

mate their relationship, as shown in Fig. 4. In this model, given

two key-frames f1 and f2, we define that the Overlap(f1,f2)

is the intersecting viewing angle and the Cover(f1,f2) is the

union of the viewing angle. For each key-frame, the viewing

angle depends on the camera lens properties. For example, a

standard 35mm lens smartphone back-facing camera has the

visible angle of 54.4◦ for landscape mode. Therefore, through

checking the direction change Δω (obtained from SRS or

SWS task by leveraging inertial data) of each key-frame in

�������	�
	��	����		���� �������������	���		����

Fig. 5. Processing the room panorama to generate room layout: (a) line
segments detection (b) room corner detection

cell Ci,j , we are able to select a series of overlapping key-

frames in different directions for cell Ci,j . For generating a

360◦ panorama, the candidate key-frames should satisfy the

following criteria: i) every two adjacent selected key-frames

should have the overlap part. ii) the selected key-frames should

cover the scene in 360◦. If the candidate key-frames in cell

Ci,j satisfies these two conditions, an off-the-shelf program

AutoStitch is applied to them to generate panoramic images.

The parameter set we use in CrowdMap panorama generation

pipeline is JPEG quality 90 and 2048 × 1024 resolution in

AutoStich.

C.II Room Layout Generation: A full view room panorama

as the input to essentially generate the room layout in

CrowdMap. It provides 360◦ whole room contextual infor-

mation which is sufficient to reconstruct the shape of the

entire room. CrowdMap chooses a 2D rectangular model for

the room layout. We further discuss how to reconstruct non-

rectangular shaped rooms in Section VI. According to 2D

rectangular model, for each room, we need to detect the

corner (edge) to generate the layout. Through using generated

panoramic images, we first detect line segments with the line

segment detection algorithm [23] (Shown in Fig.5a), followed

by applying the Hough Transform [24] to the panorama to

find the vanishing lines of these line segments. Then, five

line segments are selected along the vanishing direction as

the room corners (shown in Fig. 5b) to form the room

layout models in 3D. We repeat the previous step to generate

20,000 room layout models for each panorama. Ultimately,

the best model is selected by checking the pixel-wise surface-

consistency metric [25]. Fig. 3 (e) shows the result of room

reconstruction.

D. Floor Plan Modeling Module

The objective in this module is to merge the indoor path

skeleton with rooms and reconstruct the building floor plan. To

optimize the room layout in the floor plan, a well-established

force-directed room arrangement algorithm is applied.

Force-directed Room Arrangement: Similar to [7], we

choose the force-directed algorithms [26] to determine the

location of each room center with the least crossing edges.

This algorithm uses a spring-like model to assign attractive

force Fs and repulsive force Fr between the two neighboring

rooms Ra and Rb. Moreover, it gradually adjust the center of

each room until the room experience net zero force. Fig. 3 (f)

shows the final output of the floor plan modeling module.
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Fig. 6. The ground truth and the reconstructed floor plan

IV. CROWDMAP: IMPLEMENTATION

A prototype of CrowdMap has been implemented in several

testbeds using Google (LG) Nexus 5, Google (LG) Nexus 4,

and SAMSUNG Galaxy Nexus, running Android 4.4 KitKat

and four 16-core memory intensive (A9) Ubuntu Linux cloud

severs at Microsoft cloud platform Microsoft Azure (a total of

64-core Intel(R) Xeon(R) E5-2670 @ 2.60GHz CPU and 448

GB RAM).

This prototype CrowdMap can be divided into two part:

i) a mobile front-end prototype for Android and ii) a cloud

backend, which is deployed on an infrastructure-as-a-service

(IaaS) cloud using Apache Spark.

1) CrowdMap Mobile Front-end. The mobile front-end

allows users to record and upload sensor-rich videos annotated

with building geo-spatial information. We design a simple

graphical user interface (GUI) for mobile users for letting them

capturing the indoor scenes and upload data to the cloud server.

The datasets are zipped and then separated into 5MB chunks

for transmitting. We transmit data only when the users are

using Wi-Fi connections as a default.

2) CrowdMap Cloud Backend. The CrowdMap cloud

backend has two main functionalities: i) handling incoming

crowdsourced data. ii) processing crowdsourced visual and

inertial data and generating building floor plan. To implement

the cloud backend, CrowdMap uses a set of virtual machine

instances (VMIs) in the cloud configured with Ubuntu Linux

and Apache Spark [27] for large-scale crowdsourced data

processing.

Handling Incoming Data. We utilize a Tornado web

server to handle incoming Http request. Tornado is a high

performance asynchronous web server, which is capable of

receiving data from a large number of users simultaneously.

Our mobile clients send zipped data to Tornado via Web

Sockets, a technology that allows the dataset to be sent to

the cloud server in real-time.

Data Parallel-processing Pipeline. We first unzip the re-

ceived data and store the raw data into MongoDB, using a non-

blocking asynchronous driver to communicate with Tornado

web server. Then an Advanced Python Scheduler (APSched-

uler) will load the data and feed it to a cascade pipeline

as what we described in the previous section. Moreover, we

leverage PySpark with MLlib (interoperates with NumPy) to

accelerate the process of user trajectories aggregation. The

reconstructed building floor plan can be downloaded directly

from the website.

V. CROWDMAP: PERFORMANCE EVALUATION

We evaluate our CrowdMap prototype in the following

scenario: untrained and uncorrelated volunteers use our mobile

front-end capturing indoor scenes in a typical college building

to reconstruct building floor plan. We collect data on the

college buildings at different times of day, and over a period

of six months. Before conducting the experiment, we collect

61,243 key frames of three different buildings (Lab1 dataset,

Lab2 dataset and Gym dataset) from 301 sensor-rich video

sequences successfully uploaded by 25 users. Some places

were captured multiple times.
Fig. 6 demonstrates the comparison of the final recon-

structed result for lab1 dataset and the ground truth. We

further evaluate the performance of indoor path modeling

(Section A), room layout modeling (Section B) and floor plan

modeling (Section C) in the CrowdMap system. Moreover, the

differences between our work and Jigsaw [11] are discussed

in Section D.

A. Indoor Path Modeling Performance
Hallway Shape. We evaluate the similarity between the

hallway path skeleton generated by CrowdMap with the

ground truth. First, the reconstructed indoor path skeleton is

overlaid onto the ground truth to achieve maximum cover area

by moving and rotating the center point of the reconstructed

indoor path skeleton. Then, we manually cut off part of the

skeleton that belongs to the room path. In order to assess the

performance of CrowdMap, the metrics below are used,

P =
|Sgen

⋂Strue|
|Sgen| (3)

R =
|Sgen

⋂Strue|
|Strue| (4)
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Fig. 7. CrowdMap Indoor Path Modeling Module Evaluation

TABLE I
HALLWAY SHAPE EVALUATION

Precision (P) Recall (R) F-Measure (F )
Lab 1 87.5% 93.3% 90.3%
Lab 2 92.2% 95.9% 94.0%
Gym 84.3% 88.8% 86.5%

F = 2 ∗ P ∗ RP +R (5)

where P presents the precision of the hallway shape and

we define it as the ratio of the size of the overlapped area

to the whole area of the reconstruction hallway skeleton. R
is the recall of the hallway shape, which is expressed as the

ratio of the size of the overlapped area to the whole area of the

ground truth hallway skeleton. F stands for the harmonic mean

of the precision and recall. The performance evaluation results

are shown in Table I, which exhibit that CrowdMap is able to

achieve a precision around 88%, a recall around 93% and a

F-measure around 90%. These three assessments reveal that

our visual and inertial hybrid method is more robust to errors

and outliers. As we select occupancy grid to approximate the

indoor environment, the area of the hallway skeleton is larger

than the ground truth. Therefore, we tend to have a higher

recalls compared with the precision values.

Impact of User Trajectories Quantities. CrowdMap has

the ability to aggregate crowdsourced user trajectories based

on sequence-based aggregation method. Our method not only

uses single image as an “anchor point” to fuse trajectories,

but also checks several nearby frames and finds the longest

common subsequence between the two trajectories. Fig. 7(a)

illustrates the matching accuracy of both single image aggre-

gation method and sequence-based aggregation method with

different number of user trajectories. Obviously, our sequence-

based aggregation method performs better than single image

aggregation method. We also find that when the number of

user trajectories data reaches above 65, the accuracy of single

image aggregation method actually decreases. This is due to

the reason that indoor scenes in the same floor have a high

similarity. Hence, using single image only as an anchor point

is insufficient and leads to errors.

Tolerance of Changes in Lighting and Exposure. The

crowdsourced video data uploaded by the users are captured

at different time of a day under different lighting and exposure

conditions. To assess the performance of CrowdMap under

different lighting conditions, we manually choose user upload

data and classify them into two categories: daylight group

(primarily lighting source: sunlight, lux range: 100-500 lux)

and night group (primarily lighting source: Incandescent lamp,

lux range: 75-200 lux) by checking video data and time stamp.

We keep the size of the two groups to be equal.

The following experiments have been performed: First, the

aggregation error rate is evaluated from the daylight group.

Next, we randomly switch 10% of the night group data into

the daylight group, and then conduct the aggregation again.

We keep doing this process until all the daylight data are

switched out and the dataset becomes all night. Fig. 7(b)

shows the aggregation error rate with different portion of night

trajectories. The result exhibits that CrowdMap is robust to

changes in lighting and exposure.

Computational Latency. Indoor path modeling module

heavily relies on the process of the advanced computer vision

algorithm. Fig. 7(c) plots the CDF graph of the computational

latency for matching user trajectories. The result shows that

our method have an average running time of 0.8 seconds for

matching two key-frames (on a single-threaded setting).The

majority of this time is spent on SURF feature matching.

Performing the complete user trajectory aggregation algorithm

(with multiple image comparisons per frame) takes around 40-

50 seconds, which depends on the number of key-frames. The

performance of our matching algorithm is comparable to the

state-of-the-art.

B. Room Layout Modeling Performance

Room Area. CrowdMap utilizes visual information to

generate the room layout. For assessing the performance of

CrowdMap, room area is selected as one of our evaluation

metrics. We first calculate the room area by multiplying room

length and width. Then, the room area error is calculated,

which is defined as the area difference between the generated

room layout and the ground truth divided by the ground truth
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Fig. 8. CrowdMap Room Layout Modeling Module and Floor Plan Modeling Module Evaluation

room area. Fig. 8(a) shows the CDF graph of room area error.

The result demonstrates that our visual method achieves an

average error of 9.8%. Comparing with the result of using

inertial data (average 22.5% room area error), our method

obtains a significant improvement. This is because our method

does not require user to move across edges and corners of the

room. Moreover, the wide filed-of-view panorama generated

by video is able to provide enough context information to

reconstruct the room layout.

Room Aspect Ratio. The room aspect ratio represents the

shape of a room. We define the room aspect ratio as the

length of the room divided by the width of the room, and the

room aspect ratio error as the difference between generated

room aspect ratio and the ground truth ratio divided by the

ground truth ratio. Fig. 8(b) presents the CDF graph of room

aspect ratio error. The result illustrates that our room layout

generation method achieves an average error of 6.5%, which

generate more accurate result compared with the inertial data

(an average 15.1% room aspect ratio error).

C. Floor Plan Modeling Performance

Positions of the Room. In this module, we map the room

to the indoor pathway, and thereby, build the floor plan. The

performance of this floor plan generation process is quantified

by using the room location error. Fig. 8(c) shows the CDF

graph of room location error for three datasets. The result

reveals that the average room location error for Lab 1, Lab 2

and Gym dataset is 1.2m, 1.5m, and 1.2m, respectively. Note

that for the Gym environment, it has a sporadic distribution of

rooms. Therefore, it is very challenging to accurately locate the

room center. Hence, one room has a maximum room location

error of 5m.

D. Comparison with Jigsaw

Indoor Path Modeling. For reconstructing the indoor

pathway shape, CrowdMap and Jigsaw are both utilizing the

visual and inertial data to aggregate multiple user trajectories,

and thereby, form its shape. The difference is that: Jigsaw

requires user to take photos of each landmark, and the images

shoot for the same landmark are grouped together. Then, they

process the bundled images to calculate the camera position

���������%�	����
������

�����������������%���� ������������
����

�������������%�	����
������

���������	������������	������������ ������������

Fig. 9. Structure from Motion (SfM) Result compared with Ground Truth

(using Structure-from-Motion) and the geometry features of

the pathway (using vanishing line detection). They reconstruct

the pathway by fusing the camera position, geometry informa-

tion of the landmarks and user trajectories together. However,

CrowdMap requires user to shoot a video, and it exploits the

sequential relationship reside in the video data to reconstruct

indoor pathway with high accuracy. We process multiple

continuous key-frames to calibrate the drift error residing

in the trajectories, and then aggregate these trajectories to

generate indoor floor plan.

As pointed out by [28], the state-of-the-art Structure-from-

Motion (SfM) technique is not reliable when used in a highly

cluttered and featureless indoor environment. Participants must

have extensive experiences in shooting photos (e.g. avoid

featureless objects). As shown in Fig.9, the camera locations

inferred by SfM are not accurate in our dataset (a lab room

inside a college building). As our video-based indoor path

reconstruction method achieves the excellent performances

consistently even in featureless indoor environment (shown in

Table I), therefore, CrowdMap is more reliable than Jigsaw in

general.

Room Layout Modeling. Jigsaw and CrowMap utilize

different approach to reconstruct room layout. Jigsaw applies

aggregated user trajectories to determine the room layout.

Our system manipulates panorama generated by the video

frame to reconstruct the room layout. As shown in Fig. 8

(a) (b), our method delivers doubled performances in terms

of room area error and room aspect ratio error compared with

Jigsaw. This is due to the reason that some parts of a room
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are not accessible, thereby, relying only on the user motion

data should not provide accurate results. However, the wide

field-of-view image (360◦ panorama) is able to provide more

context information of the scene [25], including the room

layout. It is also capable to infer the edge of a room even

if it is occluded by objects.

VI. DISCUSSIONS AND LIMITATIONS

Energy Consumption. CrowdMap front-end runs on a

user’s smartphone. It takes some energy when user starts

capturing the indoor environment by shooting sensor-rich

videos. The inertial sensor (accelerometer, compass and gyro-

scope) only consumes about 30mW when sampling. Recording

video takes an average of 350mW [29] for a one minute

recording with a resolution setting of 480p. However, unlike

CrowdInside, our mobile application does not require users to

run a daemon process in the background. Therefore, several

rounds of data collecting tasks should not constitute significant

power consumption for an user.

Reconstruct Multi-Floors in Single Round. CrowdMap

only focuses on 1-floor building floor plan reconstruction. The

task of constructing multiple floors can be decomposed into

multiple 1-floor map constructions. One possible solution is to

use stairs, elevators and escalators as special reference points

and connect multiple 1-floor maps at these reference points.

According to Skyloc [30], different floors can be distinguished

by GSM fingerprints. We may also jointly use the acceleration

patterns to tell apart corridors and stairs [2] or elevators [10].

Reconstruct Non-Rectangular Shaped Room. Our room

layout reconstruction method is based on the assumption that

each room fits in a rectangular shape. Because according to

[31], around 90% of modern buildings have a rectangular

contour. The room layout for the rectangular building tends to

be consistent, and thereby, most of them are also rectangular.

However, for non-rectangular room, our visual-based approach

is either not working or may provide less accurate result.

As our future work, we propose the following solutions: i)

we jointly use user trajectories and visual-based approach to

determine the room layout. ii) when encounter non-rectangular

room, we ask users to label the edges of the room. We

believe these two solutions could enhance the accuracy of

reconstructing the layout of non-rectangular rooms.

VII. RELATED WORK

Digital Floor Plan Construction. Digital floor plan con-

struction is a relatively new topic in mobile computing.

Most of the existing approaches focus primarily on inertial

data aggregations [6], [7], [10], [32]. CrowdInside [10] is a

crowdsourcing-based system for automatically and transpar-

ently construct digital indoor floor plans. It leverages smart-

phone inertial sensor data from accelerometer, gyroscope and

compass to generate user motion traces. Also, it uses anchor

points with unique sensory pattern such as elevators, stairs,

escalators and locations with GPS reception to eliminate ac-

cumulated errors. The mapping algorithm is highly dependent

on the crowdsourced motion traces’s accuracy. Yifei Jiang et

al. [7] propose a system for automatic floor plan construction

using Wi-Fi signature similarities between different rooms and

hallway segments. Walkie-Markie [6] also leverages Wi-Fi

signals to reconstruct the room layout. However, their system

fully relies on the availability of Wi-Fi fingerprints. Jigsaw

[11] utilizes both image and sensory data to reconstruct the

indoor floor plan and achieves a better performance. However,

Jigsaw only uses images to infer the wall segments of the

room entrance and still uses aggregated user motion trace

and camera position to determine the shape of the room. As

mentioned before, we cannot assume all edges and corners

of the room could be covered with user traces as it may be

inaccessible to users (e.g. blocked by desk).

Indoor Parameters Acquisition. Various studies have

utilized sensor data to facilitate the determination of user

parameters such as location, heading and speed in an indoor

environment [1], [3], [33]–[36]. A few feature zero config-

uration requirements, thereby, ideal for using crowd sourced

data. Location is one of the most important parameters when

we are modeling an indoor environment. [34] leveraged off-

the-shelf Wi-Fi infrastructure to aid the indoor localization

of smart phones. Based on existing infrastructures, it requires

little effort for deployment. [3] proposed a system that enables

training data to be crowdsourced without any explicit effort on

the part of users, and thereby, made calibration require zero

effort. Another key parameter is the heading information. One

traditional way to obtain this is aggregating readings from a

device’s accelerometers, gyroscope and compass [37]. Because

this method can easily result in the accumulation of errors,

it requires extensive work to determine effective calibration

methods. [38] used the camera to detect heading changes

by calculating the vanishing points in consecutive images.

[35], on the other hand, makes the assumption that internal

line-shaped objects, such as light-tubes, are either parallel

or perpendicular to the building outlines. By adjusting front-

camera image projection with pose estimation, it can accu-

rately determine user headings in real time. These techniques

serve as building blocks in our system, and some of their ideas

are reflected in our final design.

Indoor Scene Reconstruction. Indoor scene reconstruction

remains an active area of research. Work [39] used smart-

phones to capture a panorama of indoor scenes and allowed

the users to manually fit lines onto the edges of walls. It then

adopted a line-fitting algorithm based on the Manhattan World

assumption to reconstruct room shapes.

Some studies have focused on specialized hardware, such

as laser scanners [40], depth sensors [41] and commercial

devices, e.g. Kinect [42]. Lately, Structure.io [43] and Google

Project Tango [44] also manufactured 3D sensor for mobile

devices. The reconstruction results of these devices are impres-

sive, however, we argue that they are not suitable for crowd-

sourcing scenarios as they require specialized equipments.

Many studies by the computer vision community have also

focused on reconstructing indoor 3D models solely from im-

ages [45], [46]. These studies used state-of-the-art techniques

like Structure from Motion [47], [48] and Multiview-stereo
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[49], [50] to generate 3D models from images. Some research

has shown an increase in accuracy if user-labeling information

is supplied [41]. As pointed out in [28], however, these

methods recommend participants with extensive experience in

shooting photos, which significantly restricts their validity in

crowdsourcing scenarios.

VIII. CONCLUSION AND FUTURE WORK

This paper presents CrowdMap, an indoor floor plan recon-

struction system based on crowdsourced sensor-rich videos.

Our solution uses the sequential relationship between consec-

utive frames to enhance the accuracy of the floor plan. The

prototype of our system is readily deployable at a large scale.

As our future work, we will focus on further processing of

the room panorama to extract more context information of

the room, such as object detection and object recognition.

We also plan to further study several issues related to the

proposed crowdsourcing based indoor mapping approaches,

such as user incentive and privacy preservation mechanism.

Once fully hardened, we believe that CrowdMap is able to

extend existing digital map services to indoor environment on

a world scale.
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