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Abstract—The recent proliferation of smartphones has been
the primary driving factor behind the booming of voice-based
mobile applications. However, the human voice is often exposed
to the public in many different scenarios, and an adversary can
easily steal a person’s voice and attack voice-based applications
with the help of state-of-the-art voice synthesis/conversion soft-
wares. In this paper, we propose a robust software-based voice
liveness detection system for defending against voice spoofing
attack. The proposed system is tailored for mobile platforms
and can be easily integrated with existing mobile applications.
We propose three approaches based on leveraging the vibration
of human vocal cords, the motion of the human vocal system,
and the functionality of vibration motor inside the smartphone.
Experimental results show that our system can detect a live
speaker with a mean accuracy of 94.38% and detect an attacker
with a mean accuracy of 88.89% by combining three approaches
we proposed.
Index Terms—Voice authentication, liveness detection.

I. INTRODUCTION

The recent proliferation of smartphones coupled with the

demand for a convenient and non-intrusive way of com-

municating and controlling have been the primary driving

factors behind the booming of voice-based mobile applica-

tions. In addition to traditional voice over IP (VoIP) applica-

tions, e.g., Skype, which allows users to make voice calls to

contacts, voice-based mobile applications have also become

mainstream. These applications all provide a voice input

interface, which allows users to submit their voices and receive

information from that voice. For example, WeChat provides

“Voiceprint” [22] authentication interface, which allows users

to log into their accounts by speaking passphrases. Besides,

SayPay [14] offers a solution that fuses mobile payments

with the human voice. These voice-based mobile applications

can be quickly developed and implemented for existing smart

devices as they require only a microphone, which is small and

inexpensive [9].

However, unlike other human biometrics, the human voice

is often exposed to the public in many different scenarios, e.g.,

people making a presentation in public, answering phone calls,

talking loudly in a restaurant. As such, with the availability of

high quality and low-cost handy recorders and other recording

devices (e.g., smartphones), a malicious user can easily steal a

person’s voice without being noticed. Several security issues

are therefore caused by the leakage of people’s voices and

pose a severe threat to voice-based applications [10, 15, 24].

For instance, with state-of-the-art speech synthesis techniques

(e.g., Adobe Voco [13]), an adversary could impersonate the

victim to spoof the voice-based authentication system once

they acquire enough victim’s voice samples. Since voice is

considered as a unique biometrics of a person, and thereby, it

is characterized as a basis for personal authentication [4], these

voice-spoofing attacks would result in severe consequences

harmful to victim’s safety, reputation, and property.

The traditional technique for defending against voice-

spoofing attacks is to implement an automatic speaker veri-

fication (ASV) system, which has already been deployed in

many popular mobile applications like WeChat. The ASV

systems employ unique vibration patterns of a user’s vocal

chords and the sound-based feature created by other physi-

cal components (e.g., mouth) to assign a unique fingerprint.

However, spoofing techniques against these systems have also

progressed drastically [7, 10, 24]. Moreover, when detecting

the attack, current ASV systems require prior knowledge of

specific voice spoofing techniques used by the attacker [6],

which is unrepresentative of the practical scenario. Therefore,

the development of a generalized defense system for voice-

spoofing attacks is of the utmost importance. Recently, many

liveness detection systems are proposed to fight voice-spoofing

attacks by studying the differences between the human vocal

system and loudspeakers. VoiceLive [26] can fight replay

attack by capturing time-difference-of-arrival (TDoA) changes

in a sequence of phoneme sounds to the two microphones of

the phone. However, it needs the same relative location of

user’s mouth during authentication, which is hard to satisfy in

practice. A liveness detection system is proposed in [25] and

can detect a live user by leveraging the unique articulatory

gestures of the user when speaking a passphrase. However, it

cannot work if the attacker performs a jamming attack using

high-frequency audio.

Considering the limitations of current solutions, we propose

a robust software-based voice spoofing defense system which

is tailored for mobile platforms and can be easily integrated

with existing voice-based mobile applications. Our solutions

use the unique vibration of human vocal cords and the

movement of throat as key differentiating factors for liveness

detection. Compared with existing ASV system, our solution

does not assume any prior knowledge of the attacking method

and is easy to operate. Moreover, our pure software solution is

ready to use and can be seamlessly deployed on off-the-shelf

smartphones.

We solve two challenges in the design of our system.
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First, in order to capture the vibration of vocal cords and the

movement of the throat simultaneously, we need to use both

the prime microphone (at the bottom) and front microphone.

Since different people have different speaking habits and use

different languages, it is difficult to extract a common pattern

that can be used to detect the liveness of a speaker. To solve

this problem, we perform spectrum subtraction of two audio

signals and utilize the energy differences of different time

slices and frequency band as a unique feature. Second, the

sampling rate of the accelerometer-equipped on smartphones

is only 50 Hz, which is not good enough to fully recover

the human throat movement. To address this issue, we extract

multiple features from the acceleration readings to build a

robust classification model and use it to determine if the

captured data is generated by human throat movement.
We summarize our contributions as follows:

• We propose a robust software-only solution for defending

against voice-spoofing attacks on smartphones with high

accuracy.

• We select and combine advanced acoustic signal process-

ing, mobile sensing, and machine learning techniques and

apply them in detecting the unique vibration pattern when

speaking.

• We develop a prototype and conduct comprehensive

evaluations. Experimental results show that our spectrum-

based approach can achieve both 100% true acceptance

and rejection rates. Our motion-based approach can

achieve mean accuracy of 96.8% and mean true rejection

rate of 88.89%. Our random vibration-based approach can
detect and locate the vibration with an accuracy of 97.5%.
By combining three approaches we proposed, our system

can detect a live speaker with a mean accuracy of 94.38%
and detect an attacker with a mean accuracy of 88.89%.

The remainder of this paper expands on above contributions.

We first introduce our attack model and key insights in Section

II and present our solutions in Section III. We conduct various

experiments to evaluate proposed solutions in Section IV and

discuss the usability and limitations of our system and related

work in Sections V and VI.

II. PRELIMINARIES

A. Attack model
The voice-spoofing attacks aim to attack the biometric

identification of the normal user. In our attack models, an

attacker is able to access victim’s smartphone and record the

voice of the victim without being noticced. Also, an attacker

can be equiped with one or more high-quality loudspeakers.

Based on collected audio signals, an attacker can launch

various attacks like replay attacks. The voice-spoofing attacks

considered in our work can be divided into two categories.
A simple replay attack. In this type of attack, an attacker

can use high-quality loudspeakers to replay collected victim’s

voice or morphed voice, so that the attacker can impersonate

the victim at a high degree of similarity. We assume that an

attacker can access victim’s smartphone in the case of not

being noticed.

(a) Human vocal structure (b) Speaker’s structure
Fig. 1. The differences between the human vocal system and a loudspeaker

A strong replay attack. In this type of attack, we assume
that the attacker can capture more information besides the

victim’s voice at the mouth. For example, the attacker can

attack the database of current ASV system and fetch the voice

signals at both victim’s mouth and throat. An attacker can

leverage multiple loudspeakers to replay two audio signals to

two microphones and imitate the human vocal systems better.

B. Background knowledge

In order to achieve robust liveness detection, we need

to understand the structural differences between the human

vocal system and loudspeakers. As shown in Fig. 1(a), the

mechanism for producing the human voice can generally be

subdivided into three parts: the lungs, the vocal folds, and

the articulators. The lung first produces adequate airflow and

air pressure to vibrate vocal folds. The vocal cords vibrate

and chop up the airflow from the lungs into audible pulses

that form the laryngeal sound source. Then, the length and

tension of the vocal cords are adjusted to produce ‘fine-tune’

pitch and tone. The articulators consisting of tongue, palate,

cheek, lips further filter the sound generated from the larynx

to strengthen it or weaken it. The vocal folds (vocal cords)

are the primary sound source to produce voiced phoneme

in the human vocal system. Besides voiced phoneme, there

exist other sound production mechanisms produced from the

same general area of the body, involving the production of

unvoiced consonants, clicks, whistling, and whispering. The

only difference between voice and unvoiced phonemes is that

there is no vibration of the vocal cords for unvoiced phonemes.

This fact suggests that the audio signals collected near the

throat and the mouth can be different, and this difference can

only be produced by the human speaker.

Strong attackers usually use high-quality loudspeakers for

spoofing attacks. As shown in Fig. 1(b), the loudspeakers

usually use an electromagnet to translate an electrical signal

into an audible sound. The electromagnet is a metal coil that

creates a magnetic field when there is an electric current flows

through it. When electrical pulses pass through the coil of the

electromagnet, the direction of the magnetic field is frequently

changed. Also, there is a permanent magnet fixed firmly into

the loud speaker. With rapidly changed magnetic filed, the coil

is attracted to and repelled from the permanent magnet. As a

result, the cone attached on the coil will vibrate back and forth,

pumping sound waves into surrounding air and smartphone’s
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Fig. 2. The spectra of audio signals collected from two microphones near
the mouth, the throat, and the loudspeaker

speaker, which means the two microphones of a smartphone

around the loudspeaker will capture very similar audio signals.

C. Key insights

In order to resist two types of attacks we considered, we

need to leverage the structural differences between human

vocal systems and loudspeakers discussed in Section II-B.

We observe that human voice can be divided into the voiced

and unvoiced part. During voiced part, the vocal cords keep

vibrating and generate low-frequency audio signals at the

throat. The vocal cords stop vibrating during unvoiced part,

while the other parts of the human vocal system generate

different sounds. We collect voice signals when a user says

“Six” at two locations (the throat and the mouth) using two

microphones, and the results are illustrated in Fig. 2. It is

clear that the audio signal collected near mouth reserves the

information of unvoiced parts, but most information of the

unvoiced part is lost in the audio signal collected near the

human throat. Also, both audio signals reserve the information

of voiced part, while the audio signal collected near throat only

contains the information at the low-frequency part. Different

from human vocal systems, the cone keeps vibrating for both

voiced and unvoiced parts in order to generate sounds. We use

a loudspeaker to replay the voice of the user and collect the

audio signals in the same way. Fig. 2 also shows the spectrum

of the same audio signal played by a loudspeaker and captured

by the prime microphone. We can observe that the spectrum

contains much more information of unvoiced parts than that

collected near the human throat.

When a person is speaking, the vocal cords vibrate at

a relatively high frequency, and the throat also moves up

and down in a relatively low frequency. Opposite to this,

loudspeakers do not have the same movement pattern. If we

put a motion sensor next to a human throat, the vibration of

vocal cords and movement of a throat generate two different

influences on the readings. Based on this observation, we argue

that the influences generated by vocal cords and throat are hard

to be imitated by loudspeakers. We will discuss the liveness

detection using acceleration signals in Section III-D.

Fig. 3. The use case of our liveness detection system

D. Use case

In order to successfully defend users from spoofing attacks,

our system requires users to put the bottom side of the smart-

phone on the throat while using the normal voice authorization

systems, as shown in Fig. 3. We leverage two microphones

that are available on most current smartphones. The prime

microphone is used to capture the low-frequency voice cased

only by the human throat, and the front microphone is used

to record human voice on the whole frequency band. Two

audio signals are well synchronized by smartphones operating

systems. The distance between the human throat and the prime

microphone must be zero, and the distance between human lips

and the front microphone is about 6cm. Since the distance is
pretty short, the time delay between two audio signals is less

than 8 samples when the sampling rate is 44,100 samples per

second. While speaking the passphrase, the user should put

the bottom side of the smartphone on the throat. During this

process, the user should be in stationary postures, like sitting

and standing.

E. Challenges

Although we get insights in Section II-C, it is still challeng-

ing to perform liveness detection on a smartphone using only

audio signals and accelerations readings. The first challenge

is how to extract useful information from audio signals in two

channels. Since different people have different speaking habits

and use different languages, it is extremely hard to extract a

common pattern that can be used to determine if the source is

a real person. To solve this problem, we compute the STFT

of two audio signals and get their spectrum subtraction. The

spectrum subtraction is then treated as a picture, and the color

represents the energy in corresponding time frequency band.

We use an image classification algorithm to determine the

liveness of the speaker.

The second challenge is that current smartphones only

provide acceleration reading at a sampling rate of 50 Hz. Since

voice-based authentication only lasts for about 3 seconds,

it is hard to extract human throat movement from limited

acceleration readings (about 150 samples). To address this

issue, we extract multiple features that describe acceleration

signal in different aspects. The features are then used to build

a robust classification model and determine if the acceleration

reading is affected by human throat movement.
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Fig. 4. System pipeline

III. SYSTEM DESIGN

A. Approach overview

The key idea underlying our liveness detection system is

to fully leverage the nature of human vocal system in order

to detect the liveness of the speaker. When a live speaker

speaks a passphrase as we asked in Section II-D, the primary

microphone only records the voice produced by the vibration

of the vocal cords, while the front microphone records the

voice produced by the whole vocal system. Based on this

observation, we study the spectrum property of audio signals

and propose a spectrum-based approach to determine if the

input audio is from a real user in Section III-C. Moreover,

human throat will move up and down, and vocal cords will

vibrate in high frequency. Both movements generate different

influences on the accelerator embedded in the smartphone. A

motion-based approach is designed in Section III-D to find

proper features and classification model to determine if an

acceleration sequence is from a normal user. An attacker, who

wants to perform replay attack, cannot imitate the human

vocal system well and cannot get the same pattern on the

audio spectrum and acceleration sequence. Furthermore, in

case that an strong attacker can steal victim’s raw audio files

from database, we design a random vibration-based approach

to inject a random noise in the collected audio signals. By

analyzing the number of injected vibrations, our system can

recognize if the input audio signal is new or stolen from the

victim.

B. System pipeline

The pipeline of data collection and processing is shown in

Fig. 4. Our system captures audio signals in two channels and

collects acceleration reading at the same time. The acceleration

reading is further processed and analyzed to validate if the

smartphone is touching human throat during data collection.

A classification model is trained based on support vector

machine (SVM) using proper features. The raw audio signals

are processed by short-time Fourier transform (STFT) to get

the spectra. We compute the subtraction of two spectra and

use it as an input to match existing patterns. If the spectrum

subtraction matches the existing patterns, the spectrum-based

classification model will regard the user as a real person. In

case that the attacker steals user’s voice recording from other

databases, we inject a random and short vibration during data

collection. The random vibration is then used to evaluate if

Fig. 5. The spectra difference

the input is a new recording or a stolen recording. Then, three

results are combined together to get the final validation results.

A user is recognized as a real person if and only if all three

decision components give positive results.

C. Spectrum-based approach

To distinguish if the voice is from a live speaker or a loud-

speaker, we need to find features to represent the relationship

and differences between two audio samples collected from two

microphones. In order to capture features on both frequency

domain and time domain, we perform Short-Time Fourier

Transform (STFT) on two audio samples with a window size

of 46ms based on:

X(τ, ω) =
n=+∞∑

n=−∞
x[n]w[n− τ ]e−jωn (1)

where τ is the time axis, ω is the frequency axis, x[n] is the an
audio sample, and X(τ, ω) is a complex function representing
the phase and magnitude of the signal over time and frequency.

Then, the spectrogram of the complex function X(τ, ω) is
computed based on:

spectrogram{x[n]}(τ, ω) ≡ |X(τ, ω)|2 (2)

Fig. 2 illustrates the spectra of two audio samples when a

user speaks “Six” to a smartphone, and we can find following

observations that can help us detect the liveness of the speaker:

1) Since the vocal cords do not vibrate during producing

unvoiced voice, the prime microphone loses most information

for unvoiced part, while the front microphone can capture this

information; 2) For the voiced part, the prime microphone

can only capture voice information at low frequency band.

If the voice is from a live speaker, the differences of two

spectra should contain most information of the voice except

that in the low frequency band of voiced part, as shown in

Fig. 5. Based on these observations, we compute the difference

between two spectra and leverage its energy distribution as the
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(a) User’s acceleration waveform
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(b) Attacker’s acceleration waveform

Fig. 6. Filtered acceleration waveforms from a normal user and an attacker
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Fig. 7. CDF of distances between acceleration sequences of normal users
and the attacker

feature to detect the liveness of a speaker. Due to unpredicted

noise and speaking volumes of the speakers, it is hard to

robustly extract the shape of energy distribution. To solve

this problem, we treated the spectra difference as an image,

and its energy represents the color. Considering the diversity

of energy distribution due to various speaking manners of

different people, all energy values (pixels in the image) are

used to build the classifier. To eliminate the influence of

different speaking time, we resize the spectra difference (the

image) and convert them to vectors. The resulted vectors are

used to build a binary Support Vector Machine (SVM) with

nonlinear kernel function to determine if the input spectra

difference satisfies the two observations we find.

D. Motion-based approach

When a user speaks a passphrase to the smartphone in our

system, there are two kinds of movements involved. First,

the throat will move up and down in a low frequency. In

addition, the vocal cords will vibrate in high frequency for

voiced phonemes. These two movements will generate differ-

ent influences on the acceleration readings in the smartphone.

To understand the influences of human speaking activity on

the acceleration readings, we first collect the acceleration

waveforms from normal users. Then, raw acceleration data

is smoothed using a moving average filter with window size

of 10. Fig. 6(a) illustrates the filtered acceleration waveforms

under the influences of the human speaking activity. We can

see that low-frequency throat movements generate 7 significant

pulses by moving up and down. Also, vocal cords vibration

affects the acceleration reading in high frequency, which is

shown as small spikes across the whole waveform. We further

study the influence of a loudspeaker on the embedded acceler-

ator and find that it is hard for an attacker to perform attacks

using a loudspeaker. Fig. 6(b) shows the filtered acceleration

Fig. 8. The spectrum of the audio signal with random vibration injected
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Fig. 9. Single-Sided Amplitude Spectrum w and w/o injected vibration

waveforms under the influences of a loud speaker. We can

see that the waveform contains much more significant spikes

whose magnitudes are mainly within [−0.05, 0.05]. Dynamic
Time Wrapping (DTW) is an efficient way to measure the

similarity between two temporal sequences. However, it is

hard to determine if an acceleration sequence is collected from

a loudspeaker using only DTW algorithm. Fig. 7 shows the

distributions of distances of acceleration sequence calculated

by DTW between normal users and between a normal user

and an attacker. We can see that two distributions are very

similar. The distances between a user and and an attacker

are even smaller than those between normal users in some

cases. To address this issue, we select 7 features to represent

an acceleration sequence: (1) Variance; (2) Minimum; (3)

Maximum; (4) Mean; (5) Skewness; (6) Kurtosis; (7) Standard

deviation. We select the features based on Principal component

analysis (PCA) and use selected features to train a SVM-based

classification model. The model is then used to determine if

an acceleration signal is from a live speaker or not.

E. Random vibration-based approach

Even if our spectrum-based approach and motion-based

approach can fight spoofing attacks effectively, we argue that

there are stronger attackers who can hack the database and

steal the voice at victim’s throat. Also, we assume that the

strong attacker can leverage multiple speakers and imitate

human vocal system perfectly with a high cost. In this case, our

spectrum-based approach and motion-based approach cannot

ensure good performance. To address this problem, we further

introduce a random vibration strategy so that the strong

attacker cannot fool our system even if the attacker can steal

the raw audio file and imitate victim’s vocal system perfectly.

Current smartphone operating system provides us the privi-

lege to operate the vibration motor and define the vibration

pattern. We fully leverage the vibration motor embedded in

most smartphones. While recording, our system will randomly
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trigger the vibration moto for a given constant time t. Then,
our system will detect the number of random vibrations in the

received audio signals. If the number is larger than 1, the audio

signal is classified as “stolen audio file” and the validation is

rejected.

To effectively detect this attack, we need to locate the

vibration accurately and determine what value of t. Here is
a trade-off of determining the value of t. If t is too small,
the intensity of the vibration may not be strong enough to

be detected. If t is too large, the noise generated by the
vibration will influence the original validation process and

our system. Based on our experiment, t = 100 ms gives us
the best performance on two smartphones. Due to the high

sampling rate provided by the current microphone, we can

design a robust algorithm to detect the vibration of smartphone

based on the audio signal. Fig. 8 shows the spectrum of the

audio signal with injected vibration with the length of 100

ms at 1 second. We can see that it is hard to detect the
vibration under 15 KHz on the spectrum since the influence

caused by vibration is buried by that of the human voice

and background noise. However, the influence caused by

smartphone’s vibration dominates the high-frequency part of

the spectrum (17 KHz ∼ 20 KHz). Fig. 9 shows the single-

sided amplitude spectrum from 17 KHz ∼ 20 KHz. It is clear
that much more energy is in the given frequency band if there

is a vibration.

Based on this insight, we design a vibration detection

algorithm to locate the vibration at the frequency domain and

validate the duration of each vibration. After getting the raw

audio signal from the front microphone, we cut the audio

sequence into frames with the equal size of 50ms. Within each
time frame, we perform STFT and calculate the sum of energy

in the selected frequency band (17 KHz ∼ 20 KHz). If the

sum of the energy is higher than a threshold τ , a vibration is
detected at the current time frame. After vibration detection on

all time frames, we group the frames that contain a vibration

as long as they are neighbors with each other. Then, we check

the length of each group. The audio is recognized as collected

from a normal user if and only if there only exists one group

with the length of N . Otherwise, the sequence is recognized
as stolen. In our experiment, we find that in some cases the

vibration motor vibrates a little bit earlier than the random

starting time we generate, and the pre-start will generate a

vibration in the previous vibration. So, we set the N = 3 and
τ = −15300 in our system. Since people need at least 2.2
seconds to finish a 6-digit passphrase, the possibility that an

attacker can get the same vibration location of the original

audio signal is less than 4.3%.

IV. EVALUATION

A. Experiment methodology

Experiment setup In order to evaluate the effectiveness of
our system, we build a prototype on two smartphones with

different sizes (LG Nexus 5 and MOTO Nexus 6). Both of

the smartphones run on Android. The smartphones are used

to capture audio signals in two channels. We design a simple

Fig. 10. A simple graphical user interface
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Fig. 11. Performance of spectrum-based approach

graphical user interface (GUI), as shown in Fig. 10, to help

users collect audio signals. The application starts capturing

user’s voice in two channels as soon as the user presses

the button and stops data collection immediately when the

user releases the button. After data collection on smartphones,

audio signals are sent to a local server for further validation.

The server runs on a MacBook Pro with 2.9 GHz Intel Core

i5 processor and 8GB 1867 MHz DDR3 memory.

Performance Metrics In our experiments, we use the

following performance metrics to evaluate the validation per-

formance of our system. True acceptance rate is defined as

the rate at which a live speaker is correctly accepted by the

system and considered as a real person. True rejection rate is

defined as the rate at which an attacker is correctly rejected

by the system.

TABLE I
TYPES OF LOUDSPEAKERS

Maker Model Number of trumpets
Willnorn SoundPlus 2

Amazon Echo 2

TABLE II
USERS’ INFORMATION

Sex Age Height (cm) Average validation time (s)
Female 28 162 2.2616

Male 27 172 2.9977

Male 22 180 3.3551

Male 27 185 4.7149

Female 25 165 2.7279

Male 24 187 3.6396

Female 23 175 3.9321

B. Performance of spectrum-based approach

To evaluate the performance of our spectrum-based ap-

proach, we collect 350 raw audio waveforms from 7 different

users. These 7 users include 4 males and 3 females. Each user

is asked to speak to the smartphone using the same 6-digit

password as we ask in Section II-D for 50 times. For each
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Fig. 12. Performance of motion-based approach

user, 5 audio waveforms are used as training data, and the

remaining audio waveforms are used as validation data. Also,

an attacker uses two loudspeakers to replay victims’ voice. The

speakers we use are listed in Table I. During replay attack, the

relative location between the loudspeaker and the smartphone

should remain the same as we do for normal users.

We can observe that spectrum-based approach can achieve

100% true acceptance rate and true rejection rate for all users.

We further evaluate how many training instances we need

to build a strong classification model and if we can provide

good validation accuracy without collecting training instances

from the new user. Therefore, we only use the audio instances

collected from one user as training data and perform evaluation

on all users. Fig. 11 shows the evaluation results. We can

observe that, with no less than 4 training instances, our system

can accurately detect both live speakers and attackers with a

accuracy of 100%. Also, our spectrum-based approach does
not need to collect much training data from a new user, which

makes our system more practical.

C. Performance of motion-based approach

In this subsection, we evaluate the validation performance

of our motion-based approach. Similarly, we collect 350 raw

acceleration sequences from 7 different users. For each user,

5 acceleration sequences are used as training data, and the

remaining are used as validation data. Also, 20 acceleration

sequences collected from the attacker are used as negative

instances. Fig. 12 illustrates the true acceptance of our motion-

based approach. We can see that our system can achieve high

true acceptance rate of at least 93.33% for most users and

provides true rejection rate of 88.89%. To further improve the
true acceptance rate, we can add more instances only collected

from the new user. We argue that user can manually label

wrongly predicted results, and our classification model can

leverage new labeled data to build a better classification model

for user 1. Experiment results show that the true acceptance

rate can be improved to at least 95% after each user adds 5

more instances to the training set.

TABLE III
PERFORMANCE OF VIBRATION DETECTION

Locations Number of TAV Number of FAV
1 40 0

2 40 0

3 40 0

4 39 0

3 4 5 6 7
Number of positive training instances
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Fig. 13. Influence of background noise

D. Performance of random vibration-based approach

In this study, we investigate the performance of our random

vibration-based approach when a strong adversary tries to fool

our system by using the collected audio profile of the victim

and imitating natural human voice using multiple speakers.

First, we examine how accurately our system can detect the

number of vibration in the audio signal. We let a user speak

in front of our system for 20 times. During each recording

process, our system generates two non-overlapped vibrations

and record the ground truth. We repeat the experiment in 4

different rooms, and the results are illustrated in Table. III.

The truly accepted vibration (TAV) is the vibration generated
by the human vocal and correctly detected by our algorithm.

The falsely accepted vibration (FAV) is the vibration generated
by the background noise but wrongly detected. We can see that

our vibration detection algorithm can achieve an accuracy of

100% on detecting non-overlapped vibration for the first three

rooms. The fourth location is in a kitchen where there may

exist high-frequency noise produced by electrical appliances.

Several time frames could be wrongly recognized as contain-

ing vibration due to the high-frequency noise, which makes the

duration of 4 vibrations longer than 150ms and be rejected by
our system. In this scenario, our system can still identify all

the vibrations with an accuracy of 97.5%.

E. Influence of ambient noise

To evaluate the influence of ambient noise on spectrum-

based approach, we place a loudspeaker at a distance of about

1 meter. We let the loudspeaker keep playing audio from

a talk show with different volumes. For each volume, we

collect 40 audio waveforms from a user. We use the same

classification model used in Section IV-B. We change the

number of positive instances to evaluate the true acceptance

rate, and the results are shown in Fig. 13. We can see that we

cannot perform validation with three positive instances when

there is background noise. When we increase the number of

positive instances to 5, we can get true acceptance rate of

82.5% in a low background noise environment. However, the

validation performance is deficient in a noisy environment with

a true acceptance rate of only 27.5%. This problem can be

solved by involving more positive instances or increasing the

weight of positive instances in the classification model. We

can see that our system can achieve a true acceptance rate of

100% when seven positive instances are involved.
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Fig. 14. Influence of different passphrases

F. Influence of different passphrases

We also conduct an experiment to show the performance

for different passphrases. In our system, we select 8 different

passphrases, and a user is asked to repeat each passphrase

for at least 45 times. For each passphrase, 15 measurements

including audio and acceleration are used for training, and the

others are used for validation. We also let the attacker perform

replay attack for 45 times for each passphrase using recorded

victim’s voice and use them as negative training and validation

data. Fig. 14 shows the true acceptance rates for 8 passphrases.

We can see that our system can achieve a true acceptance rate

of at least 93.2% for all 8 passphrases. Also, we examine the

true rejection rate of our system on the selected 8 passphrases.

Experimental results show that our system can provide true

rejection rate for at least 86.7%.

G. Influence of different phones

To show that our system can be implemented to any

smartphone equipped with two microphones, we evaluate our

system on LG Nexus 5 and LG Nexus 6. The reason we

choose these two smartphones models is that the sizes of

these two smartphones differ a lot. We ask a user to speak

to these two smartphones for 45 times, respectively. Similarly,

five measurements on each smartphone are added to the pre-

trained model in Sections IV-B and IV-C, and the remaining

are used as validation data. Experimental results show that our

system can achieve a true acceptance rate of at least 95% on

the two smartphones and get an acceptable true rejection rate

of at least 88.75%.

V. DISCUSSION

A. Usability

Except for accuracy, validation time is also critical and

determines the usability. We further test the time our system

needs to process the raw signal and get the final validation

results. Experiment results show that our method can finish the

work within 500ms in all cases, which means our system can

respond to the user right after the user stops recording and does

not introduce too much overhead. Compared with existing

works, our system does not need user’s extra effort in operating

the smartphone, e.g., moving the smartphone around the audio

source. To further strengthen the usability of our system, we

adopt the same human-computer interaction methods used by

Wechat for recording, so that users can quickly get used to

using our system.

B. Limitations

Our system involves a limited number of participants, and

all users are university students. To better understand the

performance of our system, it will be necessary to engage

more participants with a more diverse background. Also, the

experiments are conducted within one month. Considering

that human behavior and habits may change, a long-term

evaluation can be conducted. Moreover, in our system, the

duration of each random vibration is set to 100ms to get
enough vibration intensity. However, the longer the random

vibration is, the more likely the attacker can get the similar

vibration location. The current Android operating system does

not allow for changing the power of vibration. If smartphone

operation system can release the permission on adjusting the

power of vibration in the future, the duration of each random

vibration can be further shortened to a significant degree in

our system, so that it is much harder for the attacker to get

the same vibration location.

VI. RELATED WORK

A. Voice-based Mobile Applications

With advances in modern smartphones, voice-based mobile

applications, i.e., mobile apps, have grown in popularity as

these applications provide an intrinsically efficient, comfort-

able interaction interface to users. These existing voice-based

mobile applications can be divided into two categories based

on its functionalities: i) voice communication ii) voice control.

For the first category, we have voice over IP (VoIP) apps,

by which people can make a voice call to anyone using

the Internet (e.g., Skype, Google Voice). In addition, many

voice instant messenger mobile apps have been developed in

recent years, such as WeChat, WhatsApp, TalkBox, Skout,

and iMessage. These apps allow users to record short voice

messages and directly send them to others. Hence, this offers

opportunities to attackers who are able to launch a voice-

spoofing attack by imitating a victims voice, tone, and speak-

ing style. This attack could harm victims reputation, safety, and

property. The attacker could scam victims friends and family

through fake phone calls and leave fake voice messages, etc.

B. Automatic Speaker Verification (ASV) System

An automatic speaker verification system is able to accept or

reject a speech sample submitted by a user for claiming certain

identity [18]. Recently, the development of ASV systems

has made a major progress as they are widely adopted by

smartphones and online commerces [8, 11]. Existing ASV

systems are divided into two types: text-dependent and text-
independent. Text-independent ASV systems are able to ac-

cept arbitrary utterances, i.e., different speaking habits and

languages from speakers [3]. As a matter of fact, the text-

dependent ASV is widely selected for authentication applica-

tions since it provides higher recognition accuracy with fewer

required utterances. The current practice of building an ASV

system involves two processes: offline training and runtime

verification. During the offline training phase, the ASV system

uses several speech samples provided by the genuine speaker

35

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 27,2020 at 19:06:31 UTC from IEEE Xplore.  Restrictions apply. 



to extract certain spectral, prosodic [1, 16], or other high-level

features [5, 12] and uses them to create a speaker model. Then,

in the runtime verification phase, the ASV system uses the

trained speaker model to verify the incoming voice.

C. Voice-Spoofing Attacks

The voice-spoofing attacks aim to break the biometric iden-

tification of the victim. It can be divided into two categories:

voice replay attack and voice synthesis or conversion attack.

[19] shows that an attacker can overcome text-dependent ASV

systems by concatenating speech samples from multiple short

voice segments of the target speaker. Due to the simplicity

of voice replay attacks, a few research papers have been

published in developing relay attack countermeasures [19–21].

However, all these countermeasure systems suffer high false

acceptance rate (FAR) compared to respective baselines. In [2],

the authors demonstrate the vulnerabilities of ASV systems

for voice synthesis attack (generate artificial speech from text

input). [17] proposes the voice conversion attack in which the

attacker converts the spectral and prosody features of his or

her own speech and makes it resembles to the victim’s speech.

To detect voice synthesis and voice conversion attack, [23]

exploits artifacts introduced by the vocoder to discriminate

converted speech from original speech.

VII. CONCLUSION

In this paper, we propose a robust software-based voice

spoofing defense system, which is tailored for mobile plat-

forms and can be easily integrated with existing mobile

applications. We propose three approaches based on leveraging

the audio spectrum pattern, motion of the human vocal sys-

tem, and the functionality of vibration motor. Experimental

results show that our spectrum-based approach can achieve a

100% true acceptance and rejection rates. Our motion-based

approach can achieve mean accuracy of 96.8% and mean

true rejection rate of 88.89%. Our random vibration-based

approach can detection and location the vibration with an

accuracy of at least 97.5%. By combining the three approaches
we proposed, our system can detect a live speaker with a

mean accuracy of 94.38% and detect an attacker with a mean

accuracy of 88.89%.
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