
SHC: A Method for Stackable Parallel File Systems
in Userspace

Yanliang Zou†, Chen Chen†, Tongliang Deng†, Jian Zhang†, Si Chen¶, Xiaomin Zhu‖, and Shu Yin∗†‖
†School of Information Science and Technology, ShanghaiTech University, China, Email: yinshu@shanghaitech.edu.cn

¶West Chester University, PA, USA
‖National University of Defense Technology, China

∗Corresponding Author

Abstract—We present SHC, a stackable layer that leverages the
power and flexibility of middlewares to handle kernel crossings of
parallel file systems in userspace. The core of SHC is a dynamic
library interception mechanism that improves I/O performance
and guarantees consistency. Additionally, our solution uses a
server process to handle write synchronizations so as to maintain
the data correctness and the data consistency with minimal
overheads. We implement an SHC prototype with PLFS on
a Lustre system and demonstrate that SHC maintains most
interactions between applications and PLFS in userspace while
requiring fewer kernel calls. We show that SHC improves write
bandwidth up to 30x higher than FUSE, and reduces the latency
of up to 90% for high-performance I/O systems.

Index Terms—Stackable Parallel File Systems, PLFS, FUSE,
I/O performance, Kernel Crossing

I. INTRODUCTION

Parallel file systems provide a single-node massive storage

abstraction and distributing files in a striped manner. In order

to reduce kernel programming difficulties, the design of new

parallel file systems usually seek help from user space file

systems like FUSE (a.k.a. Filesystems in Userspace) [1],

which acts as an agent to assist file systems to be mounted

in the userspace. The FUSE technique relieves developing

workloads for new file systems, however, it introduces per-

formance overheads under data-intensive and concurrent I/O

scenarios due to the additional cache accesses and memory

copying redundancies between the user mode and the kernel

mode. Serving as an agent that transfers an application’s

requests in the userspace to underlying stackable file systems

for execution, FUSE behaves like a separate application to the

kernel which leads to a duplicate data cache and twice as much

data transfers between the kernel and the userspace.There are

at least two data transfers when FUSE is involved – one occurs

between an application and FUSE kernel while the other one is

between FUSE-based stackable file systems and the underlying

file systems. According to Vangoor and Zadok, additional

data transferring will occur between the FUSE kernel and

FUSE-based stackable file systems if Splicing technique is

not supported [2].

In order to retain lower development difficulties for new

parallel file systems while avoiding manipulations of existing

applications, we propose a dynamic library approach that

bypasses the FUSE without additional modifications to ap-

plications. Although dynamic library approaches have been

commonly studied, such as TableFS [3] and FusionFS [4], data

consistency may not be maintained if synchronization mecha-

nisms are not guaranteed. Take the IoT network as an example

where multiple sensors may write to the same file without

communicating with each other, the dynamic library itself may

lead to data errors if synchronization is not well addressed.

Our customized dynamic library hooks requests from users

and redirects them to the underlying file systems by overriding

general system calls under POSIX. We called this method SHC

which is comprising three key components: Server Process for

Synchronization(SPS), Hooking Library(HLib) and Customed

IOStore(CStore).

SPS is to deal with the write synchronization issue when

multiple processes are trying to write to the same file by

segmenting. It maintains data consistency but introducing no

additional memory copying and data buffering.

HLib is a library to capture I/O requests and responses for

determining where they should be delivered to. It is linked to

an application where the requests come from.

CStore is a customized version of IOStores of the FUSE-

based stackable file systems library, which is a handle to utilize

underlying file system interfaces such as POSIX and PVFS.

This modified library is linked to SPS and coordinates data

writing with client processes.

The proposed SHC aims at 1) avoiding the FUSE intervene

for stackable file systems; 2) avoiding additional modifications

to applications; 3) maintaining the data consistency when

multiple users write to a single file without communicating

each other, and 4) achieving acceptable systems performance

compared to systems with FUSE.

As for the server and client processes of SPS, we utilize the

socket that supports multi-connection to achieve interprocess

communication. Even though the socket mechanism introduces

communication overheads amongst server and client processes,

I/O systems still can gain benefits from the reduction of

memory copy operations and of redundant buffered data.

Our contributions are summarized as follows:

• We present SHC, a method to ensure the implementation

of stackable parallel file systems in userspace while

introducing fewer overheads than that of FUSE solutions;

• We implement an SHC prototype on PLFS [5] and

run tests on the eight-node testbed cluster at Sunway

TaihuLight.
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• SHC presents a method to improve the up-scalability

of the userspace parallel file systems by eliminating the

bottleneck of FUSE.

The remainder of the paper is arranged as five parts:

Section II provides the background and related work while

Section III introduces the design of the proposed SHC. Sec-

tion III also introduces the way to apply SHC on PLFS.

Section IV evaluates the experimental results that are collected

from a nine-node lab cluster and a testbed cluster at TaihuLight

supercomputing center. Section V concludes the paper with

future work.

II. BACKGROUND AND RELATED WORK

Stackable parallel file systems (hereafter referred to sPFS)

are those run in user space and exactly an application for the

kernel. They realize the parallel logic and file system function

as a completed parallel file system does. Normally, stackable

parallel file systems are mounted on some user space file

system frameworks whose representative is FUSE.

A. Background

FUSE (Filesystem in Userspace) is one of the most widely

used frameworks in both academia and industry. An exami-

nation illustrates that at least 100 file systems are developed

based on FUSE in recent years [2], [6]. FUSE consists of a

kernel module and a group of interfaces in userspace. When

mounting on FUSE, a file system inflects its behaviors to

FUSE’s interfaces so that it does not have to face the OS

kernel. Requests from applications will be first sent to FUSE’s

kernel module; then they are scheduled to deliver to the

target file system(Figure 1). Some researchers [2] analyze

structures in FUSE’s kernel level detailedly. In the FUSE

kernel module, requests from applications will be inserted into

different queues. By scheduling requests in these queues and

sending them to its daemon running in userspace, FUSE real-

izes a reasonable mechanism to process tasks from different

applications in user space.

However, FUSE introduces some unavoidable overhead for

the stackable file systems, for example, double caching for

the same data. As what we describe above, suppose a read

request sent by an application reaches sPFS through FUSE’s

transforming, both the underlying file system and FUSE will

cache a duplicate of data respectively, which wastes half of the

relevant memory and suffers lower performance when multi

I/O for certain blocks occur in the data-intensive case.

Beyond that, additional times of memory copy are also a

considerable problem in the concurrent environment. As what

we introduce above, data for reading/writing requests have to

experience at least two memory copying: 1)between FUSE and

application; 2)between sPFS and underlying file system. In

addition, setting off splicing or old version of FUSE without

splicing will cause another memory copying between sPFS
and FUSE, because splicing is a technique to create a direct

memory mapping between FUSE and its mounting file systems

instead of a necessary memory copying.

Kernel

VFS interfaces

Application

FUSE module Other specific
FS

User space file
system

N-N

Storage

User
space

Kernel
space

libfuse

(1)

(2)

(3)

(5)

(6)

(7)

N-1

(4)

Fig. 1. The architecture and data flow of PLFS mounting on FUSE: Requests
reach FUSE kernel module through VFS; then they are sent to PLFS in
userspace. During this procedure, FUSE daemon acts as a dispatching station
which response to receive and deliver requests to target file systems

Kumar et al., Aditya et al., Tarasov et al. [2], [7]–[10]

discuss the FUSE’s effect to file systems on performance

but to my best knowledge, there is no research focusing on

concurrent I/O scenarios.

B. Related work

Stackable file system is generally known as an abstraction

layer between VFS and native file systems [11]. It offers

functions as common file systems do but it does not realize

actual I/O to devices which are done by the native file

system it stacks on. Such a scheme decrease the complexity

of developing a typical stackable files include Wrapfs [12],

Cryptfs [13], SynergyFS [14] and etc. However, such a layer

still has to develop the kernel module to mount on VFS and

it would be much complicated to realize a parallel file system

in the kernel environment. Therefore, thoroughly stripping

stackable file system off from the kernel is meaningful. Never-

theless, it comes other problems without support from kernel

such as cache coherency [15] and synchronization problem

for a stackable parallel file system. User-space file system

frameworks like FUSE comes out and serve as a solution [3],

[16]–[18]. In this paper, we present SHC as another choice for

a stackable file system in userspace.

Dynamic library is a software module shared by different

applications in the OS. Before an application is run, the

dynamic library will be linked to it and loaded into the

memory. Dynamic library offer functionalities for applications

without modifying their source code.

LDPLFS [19] proposed a dynamic linking library to elimi-

nate additional kernel accesses which are introduced by FUSE.

However, LDPLFS may lead to writing inconsistency issues if

applications do not take care of the synchronization problem.

Other dynamic linking cases are similarly designed to assist

specific stackable file systems–TableFS [3] and FusionFS [4],

for example–to offer another implementation improving per-

formance or achieve additional functionality.
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Direct-Fuse is a framework aiming at bypassing FUSE for

general applications [20]. Direct-Fuse shares a similar idea of

the dynamic library, but it is more application dominated.

The major problem of existing dynamic linking library

mechanisms is that the library is determined by application

processes in the user-level, which makes communications

amongst applications difficult.

III. DESIGN OF SHC

In this section, we present the design of the proposed

SHC idea. SHC mainly aims at mounting user-level stackable

parallel file systems without FUSE intervene. In addition

to the FUSE detour, SHC provides a write synchronization

alternative for scenarios where independent users are trying to

write to the same file (e.g. IoT sensor network servers).

Application
Process 

Storage

HLib 

Server Process 

CStore sPFS library

sPFS
library

Socket

Server Node
Client Node

metadata
data

Fig. 2. Structure of SHC and the colored boxes respectively standing for
SPS, HLib and CStore.

A. SHC Architecture

SHC consists of three major components: (1) Server Process

for Synchronization(SPS), (2) Hooking Library(HLib), and (3)

Customized IOStore(CStore)(shown in Figure 2).

1) SPS: Server Process for Synchronization: SPS is an in-

dependent process to deal with applications’ writing requests.

As shown in Figure 3, SPS is composed of the main thread, a

thread pool, and several resource managers that are Standard

Template Library(STL) containers. The resource managers in

SPS mainly utilize three types of STL containers–queues,

maps, and vectors.

Main thread

Working thread 1 Working thread
2

Working thread
N 

...

Thread Pool

Server

TaskN Task(N-1) ... Task3 Task2 Task1

Tail

Task Manager

Head 

Socket
(communicate  
with HLib)

push task pop task

Socket

(accept() or  
receive  
request)

client fd manager

sPFS fd manager

Fig. 3. Structure of SPS. The rounded rectangles represent threads

The main thread is in charge of the listen socket function,

serves as the only entrance for connect() and send() requests

from clients, and responses the accept() and receive() opera-

tions. Upon receiving a write() request, the main thread creates

a task and pushes the task into the tail of the task manager–

a queue for the thread pool. Working threads in the thread

pool stay being blocked if the task manager is empty. As

the thread pool can only pop one task from the queue at a

time, working threads have to compete for a task from the

pool. We use two locks to maintain the mutual exclusions

amongst threads. In addition, the locking design should satisfy

the following demands since operations of a ”queue” are not

atomic operations:

1) The idle working threads should keep waiting when the

main thread is pushing tasks;

2) The push operation should have higher priority than the

pop;

3) All the idle working threads should be blocked when

the task queue becomes empty.

The sPFS fd manager is an STL Map acting as a key-

value table where the key is a physical path and the value

is a data structure that describes an entry of a logical file

according to its declaration in different sPFS. Each time

an open request arrives, the responsible working thread will

acquire the corresponding fd from the fd manager if it exists,

otherwise, a new fd will be created and inserted into the

manager. The existence of a fd indicates that an sPFS file is

opened and is ready for writing data.

2) HLib: Hooking Library: The Hooking Library(HLib) is

a dynamic library linked to applications. The HLib keeps

LDPLFS’s fundamental functionality that intercepts POSIX

operations [19] and redirects them to another field while

modifying the destination of write requests from a local write

request to a server process. HLib also modifies the write(),
open(), and close() functions to deal with the write synchro-

nization issue when a FUSE is absent. Without addressing the

synchronization, concurrent write operations to a single file

will turn into writes to separate files with the same name.

These misaligned writes will cause potential data imbrication

and lead to severe data inconsistencies.

We borrow the −wrap functionality with POSIX syntax

such as open,write, read, and close to hook I/O operations,

and use ” real ” prefix to distinguish the original POSIX

functions. A process will choose the customized procedure

if an I/O request is accessing any of sPFS mount points.

Otherwise, the process forwards the request to the kernel. We

compile HLib as a dynamic library with an extension ”.so”

and link the library to applications with Linux loader during

the execution. We utilize a tmp file to represent an sPFS
file so that the stackable file system layer is transparent to

applications. An application triggers I/O operations with the

help of the corresponding tmp file’s fd. HLib then maps the

tmp file’s fd to a sPFS file fd and interprets the triggered

I/O operations to sPFS forms. Besides, HLib is responsible

for communications between the application and the server
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process. This responsibility requires HLib to maintain a socket

for all the client processes.

3) CStore: Customized IOStore: IOStore refers to those

handles of sPFS utilizing to process I/O operations with

interfaces of underlying file system such as POSIX and

PVFS. CStore works in the server process and requires to

modify sPFS IOStore to support diverse underlying storage

systems. CStore manages the interfaces as different IOStore

objects. When sPFS are writing data or indexing droppings

in backends, it used to invoke a corresponding IOStore object

to perform write operations on the target file to the chosen

backend. Instead of triggering actual data writing, Our CStore

is trying to modify the sPFS IOStore to invoke socket

communications. Section III-B1 explains the detailed reasons

for this approach.

In order to maintain the compatibility, CStore spends major

efforts on modifying the write() function in the sPFS
IOStore. The modified write() only urge the server process

to manipulates the updates of metadata while leaving practical

data writing in original client processes.

When a writing request arrives, CStore obtains a socket fd
of a client for the subsequent communications from parame-

ters. A message containing the address where the data should

be written will be sent to the client process along with the

obtained socket fd. The actual data writing is raised by the

corresponding client process afterward.

B. Data Stream

SHC contains an independent server process indicating that

the data stream has inter-process communications(IPC). We

choose sockets as the IPC technique among different nodes

to assist SHC with the communications between the server

process and applications ones.

1) Writes: The write synchronization issue in parallel file

systems is the most important and complicated part of SHC.

SHC handles write synchronizations by separating data writes

and index write streams into different processes. Figure 4
demonstrates the complete write stream of SHC including

communications and data streams:

First of all, HLib hooks a writing request which is originally

sent to kernel from an application. Then HLib rearranges the

writing procedure if the target file path falls into one of sPFS
mount points. HLib generates a socket for a file with the

pid of the corresponding active process as its name. After

connecting to the server socket, a message containing param-

eters of the write request such as current pid, data count, and

physical target path is sent to the server process. Meanwhile,

the corresponding process is blocked by recv() so that the

customized write procedure does not occupy duplicated CPU

thread resources. Note that the message does not contain any

effective data at this stage.

On the server side, the main thread accepts a connecting

application from a client and receives a request. The received

request is pushed into the task manager together with the client

socket fd right away. A working thread then picks this task

from the queue and parses a buffer for the task’s parameters.

App process 

Storage

HLib Server Process 

User Space

Kernel Space 

(1)Hook

metadata

communication

data flow

data

(2)Request

(3) pfs write()

(6)Result

(4) Address & (5) Written bytes

sPFS Library

CStore

Socket

Client Node

Server Node

Fig. 4. The procedure of writing a sPFS file

The working thread calls sPFS’s write() after verifying a

writing flag included in parameters. In particular, the respective

client socket fd is deliver to sPFS’s writing function instead

of a practical data buffer. Invoked by the writing function, the

customized IOStore(a.k.a. CStore) obtain the socket fd and

sends an address to the client with the fd.

On the client side, HLib writes data to the address that is

provided by the server. This mechanism isolates the metadata

and data operations. SPS maintains a lazy mechanism to

manage metadata for higher efficiency so that metadata will be

pushed to underlying storage devices periodically rather than

being flushed immediately when writes are issued.

2) Reads: The read operation is simpler than writes in

SHC. Figure 5 presents the data flow of communication and

read data streams. The procedure of reading an sPFS file is

similar to a common linking library in some way.

App process 

Storage

HLib 

User Space

Kernel Space 

sPFS Library

(1)Hook

communication

data flow

Server process 

(4)pfs read()

Socket
(2) Notice (3) Ack

Client Node

Server Node

Fig. 5. The procedure of reading a sPFS file

At first, HLib hooks a read request from an application and

exams its path. HLib then connects and notifies the server

process to flush the related metadata from memory to disks to

keep the modified information updated on persistent storages.

The server process will check the existence of a fd for such

file in the sPFS manager and flush the metadata if a fd
exists. Otherwise, the server process does not perform any

flush operation. Notice that this interaction only occurs once

during the whole reading action in spite of the number of

read() is called.
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After receiving the reply from the server process, HLib

invokes sPFS reading function for the target data. The main

role of HLib is to maintain a mapping between a logical sPFS
file and a tmp file which is held by an application.

C. Security

Although we realize our conjecture of SHC, the proposed

SHC implementation still steps far away from an effective

alternative to FUSE. We propose some preliminary moves that

we tried to push SHC one step closer to its security goal.

We design a mechanism to manage connections between the

server and client sockets under a limited connection quantity

of server sockets. The mechanism is designed based on the

following investigations:

• Keeping a client connected to the server all along is not

efficient even in concurrent I/O circumstances.

• Consider that concurrent I/O operations have large size

data buffers, the read() and write() in HLib do not in

charge of closing the socket of a client. Only close()
deals with the termination of a client socket.

• Not all developers remember to invoke close() under

heavy I/O workloads.

We design a mechanism on the server side to manage

numbers of client connections with an occupancy count for

each client fd. An individual timestamp is set for each active

client in the client socket fd manager when an action like

receiving occurs. Every time the main thread updates the

fd set before receiving a connection, the thread checks the

inactive clients’ timestamps and evacuates the client with the

oldest timestamp to make rooms for other ones. In addition,

those connected clients that have been idled long enough to

trigger a threshold will be closed as well. As a client is

disconnected, the related sPFS file that has a fd object in

the PLS file manager will be closed.

Another design consideration lies in: after obtaining a

request, the main thread does not parse the received buffer,

while the working thread that chooses a task does have to

parse the buffer. In this case, the main thread handles the

connections and requests in a concurrent I/O circumstance in

a more efficient way.

IV. EXPERIMENT RESULTS AND EVALUATION

A. Implementation of SHC on PLFS

Parallel Log-structured File System(PLFS) is a typical

stackable parallel file system mainly designed for quick check-

point I/O by the Los Alamos National Laboratory(LANL) and

EMC Corporation. Its most brilliant characteristic is to change

N-1 I/O pattern into N-N I/O pattern by arranging a container

that logically stands for a common file. Multi processes can

simultaneously write to this ”file” by respectively writing

different physical data dropping files in the container, while

its metadata is managed by a designed mechanism with the

help of some index dropping files [5].

As a user-level file system, PLFS cannot be deployed in an

operating system without manipulations. One of the solutions

is to use MPI-IO API reconfigure applications’ code which

is costly since POSIX is widely supported by applications.

The other one is to mount PLFS with FUSE. Serving as a

transparent middle-ware I/O layer, PLFS draws supports from

underlying file systems by managing their interfaces such as

PVFS, POSIX, HDFS, etc., in its IOStores module. We modify

PVFS and POSIX IOStore in our study.

B. Testbed

We implement our SHC on a Sunway TaihuLight HPC

testbed cluster to test the I/O concurrency and up-scalability.

The cluster for our test is built on an eight-node Lustre file

system and is interconnected with InfiniBand. The file system

provides 155TB storage capacity.

We deploy PLFS (v2.5) with FUSE (v2.9.7) and SHC,

and compare the performance obtained by fs test benchmark

[21]. fs test is an open source I/O pattern emulation bench-

mark application developed at LANL. This benchmark can be

used to emulate a real applications I/O pattern. It supports

the MPI/IO, POSIX, and PLFS API I/O interfaces. For the

purposes of this evaluation, we use fs test to generate a

scenario where a lot of data is modified concurrently to reflect

the overhead of open/sync/close operations. We use Open-

MPI (v3.1.0) to manage multiple processes in our tests.

C. Results Analysis

1) Bandwidth: Figure 6 shows the fs test results of writ-

ing and reading bandwidth under different conditions which

are file size, transfer size and number of processes. We do not

prohibit cache in the reading of both SHC-PLFS and FUSE-

PLFS because FUSE’s double caching is also an important

impact of their comparison. In Figure 6, SHC-PLFS shows

outstanding performance compared with FUSE-PLFS system.

Transfer sizes: Transfer size is one of the most im-

portant factors of the performance. For a fixed amount of

data, a smaller transfer size means a larger number of I/O

blocks(nobj). Since SHC has to maintain communications

between applications and SPS through sockets for each I/O

block, the smaller the transfer size is, the larger proportion

the extra overheads caused by sockets will take in the whole

performance. In this section, we present comparisons of band-

width between SHC-PLFS and FUSE-PLFS with changes

of transfer sizes for 2 file sizes. Figure 6(a)(d) and show

sharply increasing the bandwidth of SHC with the growth

of transfer size. We notice that SHC-PLFS system presents

a great superiority compared with FUSE-PLFS. One of the

main reasons is that FUSE-PLFS produces more than one

memory copying of data, while SHC does not introduce extra

data copying between kernel and userspace. When transfer

size is 4KB, writing bandwidth of SHC-PLFS is smaller

than FUSE-PLFS because the proportion of extra overheads

caused by sockets and mutex competition in each operation

is larger than the additional memory data copying in FUSE-

PLFS. FUSE-PLFS presents low stable bandwidth which can

probably blame MPI. When writing to FUSE-PLFS, it is an

N-1 pattern in MPI’s view, while it is an N-N pattern when
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Fig. 6. Comparisons on write bandwidth. (a) and (d) shows the important effect of transfer size in two types of file sizes; (b) and (e) support an analysis
that file size may take little influence on write bandwidth; in (c) and (f), SHC shows lower performance in single process case because of the gap between
two write operations.

writing to SHC-PLFS. So that the former’s synchronization

time is much higher than the latter’s(Table I).

TABLE I
WRITE SYNC TIME OF SHC-PLFS VS. FUSE-PLFS (IN SECOND)

file size transfer size
4KB 16KB 64KB 256KB 1MB

SHC
256MB 2.64 3 2.44 3.26 4.99 ∗10−3

2GB 0.019 1.73 2.37 3.67 3.49

FUSE
256MB 0.138 0.893 1.88 1.37 1.6

2GB 0.113 1.53 6.31 1.54 3.39

File sizes: Notice that SHC-PLFS exceeds FUSE-PLFS in

Figure 6(a)(c), thus we choose 16KB and 64KB as fixed trans-

fer sizes in the following tests. In Figure 6(b)(e) , both SHC-

PLFS and FUSE-PLFS present a stable level of bandwidth.

Different file sizes effect little on the bandwidth performance

caused proportion of effective I/O is determined for each fixed-

size transferred block in some way no matter how many ’nobj’

a test contains. Comparison of (a) and (d) in Figure 6 proves

proves this analysis either.

Processes Quantity: In Figure 6(c) , performances of SHC-

PLFS with a small number of processes are much lower

than that with more processes and FUSE-PLFS cases. That’s

because SPS introduce extra waiting time between two writing

operations. After a client connects to the SPS through a socket,

the main thread of SPS will keep receiving requests from this

client and push these requests into the task manager. When

a working thread in SPS picks a task from queue, the main

thread will stop receiving requests from the exact client so

that the following packages from this client have to stay in the

socket buffer until the working thread finishes. Additional wait

time is introduced to the gap between two requests. In multiple

processes cases, the main thread keeps busy receiving requests

and the effect of gaps is depressed. In addition, working

threads with requests from different clients will compete for

locks for synchronization. Although the competitions increase

the total time of the operations, more requests from these

clients gather in the socket buffer so that the total number of

gaps during the whole test decreases. Because more requests

will be pushed into the task manager before being picked since

the main thread has a higher priority than working threads.

When it comes to larger transfer size(Figure 6(f) SHC-PLFS

reaches a more outstanding level that even in one process case

it exceeds FUSE-PLFS.

Reading bandwidth results shows an overall advantage

compared to FUSE-PLFS. Since the reading procedure of

SHC can directly obtain data from storage except only once

communication to the server node for consistency, it gives

higher increment than the writing procedure does. We omit the

reading procedure analysis in this paper for it sharing similar

reasons with the writing one.

2) Open time and close time: Open time of the two system

is shown by Figure 7. SHC keeps staying at a stable low

level of open performance, while FUSE’s open time oppositely

presents much higher. The open time of FUSE-PLFS shows

sharp increment with the growth of not only file size but also

a number of processes. When opening a file, FUSE needs

to create a corresponding handle in its kernel module before

delivering the open() request to PLFS [2]. There may be

numbers of lock competitions among queues in FUSE’e kernel

module. In contrast, with SHC, an application can directly

invoke plfs open() for a file except only one synchronization

occurs in SPS for each open operation.

Besides, SHC behaves outstanding when closing a
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(e)Close time vs. file sizes
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(g)Close time vs. process #
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(h)Close time vs. process #
(file size=2GB, transfer size=16KB)
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Fig. 7. (a)-(d) are comparision of open time between SHC-PLFS and FUSE-PLFS; (e)-(h) are related to close time. All of the results shows high overheads
of FUSE-PLFS because of its internal file handles and synchronization

file(Figure 7). Its close time also stays at a stable low level

while FUSE’s is much higher than it. One reason is that, FUSE

will invoke its FLUSH operation [2] which is meaningless

for PLFS since plfs close() contains index flushing. What’s

more, FUSE has to maintain its handles of open files in the

FUSE kernel module, and in the N-1 pattern, all processes have

to compete for locks to update the handle. In contrast, PLFS

has such a mechanism similar to these handles, for example,

maintaining the reference number of a file. Thus, calling

plfs close() directly by SHC is relatively more efficient than

invoking close() through FUSE. Similarly, multi processes

also introduce lock competitions in the FUSE kernel module

while closing a file. Figure 7(g)(h) reveal negative influences

caused by multi-processes.

D. Comparison with LDPLFS

We run additional tests on a 9-node cluster to compare the

performance with LDPLFS. The cluster is equpped with Intel

Xeon E5-2603 and 16GB DDR4 memory for each node, and

runs on PVFS file system. Figure 8 compares performance

between LDPLFS and SHC. We can observe that SHC retains

similar read performance compare to LDPLFS. But SHC can

only reach 65-96% write performance of LDPLFS, which is

mainly due to the SHC additional metadata management.

In general, we can argue that LDPLFS hooking method

works well for data reading and writing. However, when

it comes to concurrent writes to a single namespace, it is

another story. First of all, if more than one applications try

to write to the same file (e.g. IoT sensor network), multiple

writes may not be issued on the correct locations and may

introduce data overlapping. Such communications amongst

the applications can be achieved via FUSE daemons, this

mechanism is eliminated when FUSE is bypassed. This could
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Fig. 8. Both writing and reading comparison are under different number of
processes and transfer sizes. (a) Each data block is sync after write(); (b)
We release cache between two workloads.

lead to a severe data inconsistency problem. Furthermore,

LDPLFS does not take care of the mis-calling close() in

applications. In this case, any lazy I/O operations may lead

to a problem that metadata would not be persistently stored

as the consequent plfs close() will not be invoked before a

process exits.

We present a small experiment to study the potential de-

ficiency of LDPLFS. We fork four processes to emulate four

independent applications and make them write to the same file

in the PLFS frontend. The file is written in an append mode.

Table II shows the recorded file size via stat() function under

the three writing methods (FUSE, SHC, and LDPLFS). We

notice that LDPLFS presents only a quarter amount of data

from the frontend while stores all four pieces of data at the

backend. This indicates that LDPLFS treats the four writes

independently and mis-updates the metadata due to the lack

of synchronizations.

In addition to the misrepresenting data sizes, we design

another small experiment to investigate the missing close()
scenario. We create a process to open a file, write data,
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TABLE II
FILE SIZES(KB) AFTER WRITING BY FOUR PROCESSES

per process total size FUSE SHC LDPLFS
64 256 256 256 64

256 1024 1024 1024 256
1024 4096 4096 4096 1024

force it to exit without invoking close() and examine the

corresponding metadata. We observe that the metadata of the

file is NULL while the written data is stored at the backend.

The major reason is that without FUSE intervene, kernels may

not be notified to flush the metadata only if applications raise

explicit close() calls.

V. CONCLUSION

In this paper, we present a mechanism called SHC to reduce

kernel crossings of a parallel file system in userspace based

on the discussion of the limitation of FUSE when mounting

stackable parallel file systems. The SHC is comprising of three

components–SPS, HLib, and CStore that utilizes sockets. The

SHC is then applied on PLFS and is further implemented

on an 8-node Sunway TaihuLight HPC testbed Lustre file

system with InfiniBand connections. The preliminary results

are collected from the fs test benchmarks. The results indi-

cate that kernel crossings become a major I/O performance

bottleneck in a concurrent I/O circumstance for stackable

parallel file systems. The trend that is presented in the results

also demonstrates that the I/O performance will be heavily

affected by kernel crossings as storage system go upscaling.

In addition, we compare the performance between SHC with

LDPLFS and reveal its potential to write inconsistency issue

under IoT scenarios, where multiple processes write to the

same file with communicating with each other.

SHC is eager for tests on petascale clusters to reveal its

bottlenecks. Furthermore, we plan to improve the fault tolerant

capability for SHC. Moreover, it is further work to make the

SHC method general support for more stackable parallel file

systems by a group of universal interfaces.
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