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ABSTRACT
Crowdsourcing is a technology with the potential to rev-
olutionize large-scale data gathering in an extremely cost-
effective manner. It provides an unprecedented means of
collecting data from the physical world, particularly through
the use of modern smartphones, which are equipped with
high-resolution cameras and various micro-electrical sensors.
In this paper, we address the critical task of reconstructing
the indoor interior view of a building from crowdsourced
data. We propose, design, and prototype IndoorCrowd2D,
a smartphone-empowered crowdsourcing system for indoor
scene reconstruction. We first formulate the problem via
trackable models and then employ a divide and conquer ap-
proach to address the inherently incomplete, opportunistic,
and noisy crowdsourced data. By utilizing the image infor-
mation and sensory data in a coordinated way, our system
demonstrates high result-accuracy, as well as allows a grad-
ual build-up procedure of the hallway skeleton. Our evalua-
tion result shows that IndoorCrowd2D achieves a precision
around 85%, a 100% recall and a F-score around 95% for re-
constructing college buildings from 1,151 datasets uploaded
by 25 users. This reveals that our image and sensor hybrid
method is more robust to overcome errors and outliers as
compared to image-only method.
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1. INTRODUCTION
The emerging technology has witnessed the birth of vir-

tual tour applications that connect the physical and cyber
world by enabling an immersive visual experience. The in-
dustrial state-of-the-art Google Street View [20] project pro-
vides 360 degree panoramic views along many public streets
in the world, covering about 5 million miles of roads and
more than 3,000 cities. However, unlike outdoor environ-
ment, only 91 indoor street view transit locations around
the world are currently available from Google Map. The
major obstacle to ubiquitous coverage is the complexity of
the indoor environment [24]. As a result, existing outdoor
street-view reconstruction techniques either cannot be di-
rectly applied to an indoor environment or become very
costly.
Currently, indoor visualization has been studied by robotic

and computer vision communities. One of the state-of-the-
art solution is named simultaneous localization and mapping
(SLAM) [13, 24, 44]. In [24], the authors present a SLAM-
based human-operated backpack system which equipped with
2D laser scanners and inertial measurement units (IMU) to
automatically reconstruct building interior view. Xiao and
Furukawa [44] reconstruct the structure and interior view of
world museums by jointly using several advanced computer
vision algorithms and large-scale laser scanning 3D points.
However, most of current SLAM-based indoor scene recon-
struction techniques require specialize equipment to capture
indoor scene and cannot be scaled well. Alternatively, some
researches focus on utilizing image-based pose estimation
techniques such as Structure from Motion (SfM) [1,36,37,40]
and Multiview-stereo [17, 18] to process image collections
and perceive spatial relationships of these images. However,
indoor scenes are usually full of structurally similar and tex-
tureless objects, which violates assumptions of vision-based
algorithms. Hence, these vision based solutions are usually
unable to provide accurate spatial structure results at a large
scale [14].
In this paper, we propose IndoorCrowd2D, a smartphone

empowered system utilizing the power of the crowd for help-
ing us reconstruct the building interior views at large scale
and with low cost. Our system is able to provide immer-
sive panoramic image viewing experience for building inte-
rior views with an effective scene navigation mechanism. It
breaks away from established approaches to reconstruct in-
door scenes, and explores an alternative architecture based
on crowdsourcing and mobile-sensing. IndoorCrowd2D is
expected to extend existing online map service to indoor en-
vironment at a large scale. Moreover, IndoorCrowd2D can
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enable a variety of applications including indoor navigation,
localization and emergency management.
The power of crowdsourcing has been confirmed by the

success of such projects as OpenStreetMap. It attracts more
than one million contributors, and has achieved impressive
accuracy in labeling approximately 21,107,200 miles of road
across the world. Meanwhile, the ubiquity of smartphones
and wearable devices facilitates extending the scale of such
systems, liberating users from the need for a computer. Re-
cent work has used crowdsourced smartphone inertial data
to infer user trajectories and use them to reconstruct indoor
digital map [2, 9, 21, 27, 34, 49]. [19] takes one step further,
both image and inertial data are used to generate an indoor
floor plan.
To the best of our knowledge, we are the first to propose

and implement a smartphone-based crowdsourcing system
that explores the power of untrained users to generate build-
ing interactive panoramic maps at large scale following an
open-source approach. Our system design focuses on indoor
panoramic map generation. The final output of our sys-
tem contains multiple panoramic images for visualizing the
building interior view. We also provide a navigable hallway
skeleton for each floor that enable users to easily navigate
through a large scale indoor environment. Users can take
an immersive virtual tour of a building by using an Internet
browser.
We solve two major challenges within the IndoorCrowd2D

design. Unlike the traditional indoor scene reconstruction
technique, which utilizes professional equipment [13, 20, 24]
to capture images in a pre-defined path, the image upload
from the crowd are determined by many individual users.
Therefore, the camera positions, view directions and cam-
era moving trajectories are unknown in advance. This in
turn creates a challenge when crowdsourcing and position-
ing indoor interior image at a large scale. To overcome the
first challenge, we draw on multi-dimensional sensing. First,
the inertial sensor inside smartphones combine with image
data is utilized to track user movements. Then, we lever-
age multiple users’ tracking information to re-establish the
building hallway skeleton. Moreover, the output hallway
skeleton offers an auxiliary information to help generating
indoor scene panorama with the correct position. Regard-
ing to the second challenge in our design, the crowdsourced
data is inherently incomplete, opportunistic, and noisy. For
instance, the image data is captured and uploaded by differ-
ent users with a wide variety of mobile devices under vari-
ous lighting conditions. Hence, our system should be robust
and be able to handle heterogeneous, redundant, inaccurate
and low-quality data. To solve this issue, IndoorCrowd2D
employs a divide and conquer approach: i) the mobile ap-
plication with a real-time data quality feedback mechanism
is designed to guide users to provide good quality data. ii)
a hierarchical processing pipeline at the cloud computing
backend is designed to gradually filter out redundant and
low-quality data. In addition, the building interior view re-
construction algorithm is engineered to guarantee a high ac-
curacy and noise-tolerant performance. We summarize our
contributions as follows:
• We formulate the problem via designing two trackable
models, and also employ the divide and conquer ap-
proach to address the inherently incomplete and noisy
crowdsourced data. Image information and sensory
data are both unitized in a synergetic manner for the
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Figure 1: The architecture of IndoorCrowd2D.

purpose of improving the results accuracy and allowing
gradual building-up of the hallway skeleton. In partic-
ular, we design an aggregation algorithm, which utilize
the visual information as “anchor point" to aggregate
crowdsourced sensory data.

• We prototype the IndoorCrowd2D system by imple-
menting a mobile application and a cloud computing
backend. The mobile application offers the users a
convenient method to capture the indoor interior view.
Furthermore, the cloud computing backend is able to
automatically generate the interactive panoramic maps.

• We evaluate the IndoorCrowd2D prototype in real-
world scenarios. The performance of IndoorCrowd2D
exhibits a significantly high recall, good precision and
high F-measure. Based on our evaluation result, with
approximately 425 crowdsourced datasets from 25 users,
we can integrate the hallway skeleton and also generate
the panoramas within it.

The rest of this paper expands on each of these contribu-
tions, beginning with the design overview and system archi-
tecture (Section 2), followed by the system modeling (Sec-
tion 3), design details (Section 4) and the implementation
of a prototyped IndoorCrowd2D (Section 5). Experiments
are conducted to assess this system (Section 6). After dis-
cussing the limitations of our system (Section 7), our work
is compared with related works (Section 8). We summarize
this paper in Section 9.

2. DESIGN OVERVIEW
IndoorCrowd2D is a smartphone-empowered crowdsourc-

ing system for building interior view reconstruction. It lever-
ages crowdsourced image and sensory data and does not
rely on the priori that knowing any building interior in-
formation. The result of IndoorCrowd2D is an interactive
panoramic map, which can be divided into two parts: i)
indoor panoramic images and ii) building hallway skeleton.
The first part aims at creating appealing panoramic images
for visualizing the indoor interior view. The second part
is built for providing an interactive navigation mechanism
through these panoramas.
Compare with conventional approach, which hires volun-

teers to take pictures and logs the location and direction of
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each picture on the digital floor plan manually, it is very
challenging to build up an accurate and complete interac-
tive panoramic map by leveraging crowdsourced data only.
This is because the crowdsourced individual user data are
inherently opportunistic, incomplete, and noisy. Hence, we
employ the divide and conquer approach, which is built upon
two models: indoor spatial model (Section 3.1) and indoor
user trajectory model (Section 3.2). The first model dis-
cretizes the continuous indoor space into grid matrix and
represents it as unit cells in metric terms. The second model
defines a special data structure named image vector bundle,
which aims at providing accurate user movement informa-
tion by combining both the sensory and the image data.
Moreover, we apply a reduced Manhattan World assump-
tion (RMW) [12] to simplify the structure of the hallway
skeleton. In addition, this hallway skeleton structure is tai-
lored for panoramic image navigation. Based on these two
models, a complete building interior map is gradually dis-
covered as long as sufficient crowdsourced data are collected.
As shown in Fig. 1, the architecture of the IndoorCrowd2D

system consists of two components: an Android application
runs on a mobile platform and a cloud computing backend.
The mobile application is responsible for crowdsourced data
acquisition. It allows users to shoot and upload building in-
terior scenes annotated with synchronized sensory data in-
cluding compass, gyroscope and accelerometer to the cloud.
Then, the cloud processes multiple datasets simultaneously.
For each dataset, the cloud first convert the sensory data
and image data to an image vector bundle to represent
the geospatial relationship among each consecutive image.
Moreover, the cloud normalizes each image vector bundle
based on the RMW assumption. For multiple user datasets,
the cloud aggregates geospatially-similar image vector bun-
dles together. Finally, our system completely reconstruct
the indoor panoramic images, and also the hallway skeleton
of the building.
Based on the flow of operations, we further divide the

whole system into five modules, namely: 1) data acquisition
interface (Section 4.1); 2) image vector bundle generation
(Section 4.2); 3) image vector bundle normalization (Section
4.3); 4) image vector bundle aggregation (Section 4.4); 5)
hallway skeleton and building interior view reconstruction
(Section 4.5).
Since our approach does not require any professional equip-

ments or special trainings, it alleviates the overhead of build-
ing interior view reconstruction compared to the conven-
tional approach. Particularly, users are only involved in the
data acquisition module. A typical use case could be: a
user holds his/her smartphone, starts our mobile applica-
tion, enters a room (our mobile application takes pictures
automatically), walks around inside the room, then moves
towards another room through a hallway. To save energy,
our mobile application only captures the sensory data and
the image data when user starts shooting. Also, it logs out
the sensory data when user stops capturing the scene.

3. SYSTEM MODELING

3.1 Indoor Spatial Model
In IndoorCrowd2D, we design our own indoor spatial model

to build the coordinates of the 2D indoor space. It repre-
sents the indoor environment by a homogeneous grid matrix,
which reflects the accessibility of the indoor environment
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Figure 2: Indoor spatial model for IndoorCrowd2D

(shown in Fig. 2). Specifically, each cell contains a numer-
ical value and is initialized as 0. It increased by 1 every
time if a user trajectory is successfully projected to the cell
grids. In addition, we store the user trajectory information
to the cell for further processing. This model is tailored to
IndoorCrowd2D because it provides trackable results and is
applicable for our divide and conquer approach.
In order to initialize the grid matrix for each floor as well

as preserve the structural and geometrical properties of the
space at the same time, we introduce the reduced Manhat-
tan World (RMW) assumption. According to the RMW
assumption, we assume two perpendicular dominant axes
are existed for each building floor. Also, each line segment
(most corridors) inside the building floor is supposed to align
with one of the two axes. Compare with predominant path-
based space assumption that applied in [2, 19], the RMW
assumption offers the following advantages in our building
interior view reconstruction system: i) it produces clean,
simple hallway skeleton as outputs, which is good enough for
indoor panoramic map navigation. ii) it normalizes the ori-
entation of each image, which benefits the reconstruction of
the indoor interior views. Note that the RMW assumption
may not suitable for some particular buildings, which are
not predominantly rectangular (e.g. the Pentagon). How-
ever, according to [38], more than 90% of modern buildings
are rectangular actually. We moreover discuss how to re-
construct non-predominantly rectangular building and the
possible impact of accuracy in Section 7.
Based on the RMW assumption, the grid matrix initializa-

tion process can be divided into two steps: First, we detect
the dominant axes of the building (See Section 4.3). Second,
we divide the indoor building space into a uniform square
unit cells C = {c0,0, c0,1, .., cn,n} upon the detected domi-
nant axes of the building. Then, we initialize each cell with
value 0.

3.2 Indoor User Trajectory Model
We further put forward an indoor user trajectory model

to provide accurate matches among the inherently incom-
plete, uncoordinated, and noisy user data. In this model,
we propose to use a tailored image vector data structure to
not only represent user movement inferred from the sensory
data, but also include the corresponding image information.
This proposed model takes an individual user trajectory, i.e.,
a sequence of captured images annotated with sensor data
as the input. Next, it outputs a discretized image vector
bundle, which is comprised of many image vectors and the
geospatial information of these image vectors (shown in Fig.
3). Then, each image vector is mapped to a unit cell in
the space model. The spatial relationships of the unit cells
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Figure 3: Indoor user trajectory model for Indoor-
Crowd2D

are further deduced from the image vectors. In general, our
proposed models spontaneously allow the hallway skeleton
to be built-up gradually.
We define the user trajectory by a sequence of image vec-

torsZ = {~z1, ~z2, ..., ~zt, ..., ~zT } represents the geospatial char-
acteristics of user movement at each time t during the total
track life T . We also refer Zκ as an image vector bundle
(IVB) generated by user with a reference number κ.
For each time step, we generate an image vector ~z by con-

verting the raw sensor and the image data through image
vector bundle generation algorithm (Section 4.2). Each of
the image vectors ~zt = [xt, yt, ~ψt, It, t] represents one user’s
movement, which include relative spatial location [x, y], head-
ing direction ~ψ, image I at time t and timestamp. All the
information is all extracted through the sensor data and
camera visual tracking. Since a discretized indoor spatial
model is applied, the normalization of each image vector ~z
and the projection of the ~z to a cell ci,j are necessary.

3.3 Basic Elements of Building Interior View
In IndoorCrowd2D, we consider five basic elements of ev-

ery building interior view, each of which defines a particu-
lar indoor scenario: corridor, room, wing, intersection, and
open area (shown in Fig. 4). All of these elements have its
own special visual or sensory features. We now briefly ex-
plain these basic elements: 1) Corridor, it is a narrow tract
and usually have a long passageway. It is full of texture-
less walls and have various lightning conditions. The users’
moving trajectories inside corridor are expected as a bidirec-
tional flow; 2) Room, it is a portion of space separated by
walls. An occupied room usually contains a few texture-rich
man-made objects. The moving patterns of the user inside
a room may differ a lot and may cover all locations where
are reachable to the user. 3) Wing, it is a special corridor
which one side is wall and the other side is transparent win-
dows or open space. It usually contains more visual textures
compare to corridor. However, the lightning conditions may
various a lot due to the affect of sun-light. 4) Intersection,
a place at which two or more corridors (or wings) cross.
Users take turns at the intersection point and therefore cre-
ate a unique moving pattern. 5) Open Area, an open space
where it is like a room without walls (e.g. a lobby). Users
could reach this place through nearly all possible directions.
Therefore, the aggregated user trajectories could be complex
at this place.

4. DESIGN DETAILS

4.1 Data Acquisition Interface Design
Data acquisition interface is designed for collecting images

and sensory data from each user. In order to enhance the
overall crowdsourced data quality from users, we design a

Corridor
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Room
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Wall

Window

Figure 4: Basic elements of building interior view

mobile application that is deployed on user’s smartphone.
Compare to conventional approach that user requires to use
specialize equipment, locate and logs the direction of each
picture and walk through a pre-define path to capture the
indoor scene, our application provides a much more handy
data capture process. Indeed, we simplify the whole data
capturing process and only require users to put minimal
effort in capturing the indoor scene by using our mobile ap-
plication. We further conduct a mobile application usability
study in Section 6.
Proactive Data Collection. IndoorCrowd2D follows a

proactive data collecting mechanism. Our application uses
the smartphone’s back camera to capture the indoor scene
and does not require any other specialized equipment. Once
start capturing, users can move freely and steadily holding
the smartphone vertically or horizontally (landscape mode).
Our mobile application automatically takes pictures for ev-
ery t seconds and records the sensory data (accelerometer,
gyroscope and compass) with the timestamp simultaneously.
Real-time Data Quality Feedback. In our smart-

phone application, we implement a real-time data quality
feedback mechanism similar to [49] to guide the users to
provide high quality data. While the user is capturing the
scene, our application continues estimating the data quality
metrics by processing the sensor data and the image data
in real-time. The metrics are measured by the smartphone
application include: i) linear acceleration, ii) angular accel-
eration and iii) the number of SURF [4] features in each pic-
ture. Moreover, the value of linear acceleration and angular
acceleration can be directly read from mobile platform API,
whereas, the number of SURF features should be obtained
from the SURF feature detection algorithm by leveraging
the OpenCV [7] library.
If the measured values of i) and ii) are beyond a certain

threshold (~vh, ~ωh), it indicates that the user either moves or
turns too fast. In this case, a hint appears on the screen to
remind the user to slow down. If our application detects the
number of features in iii) falls below a predefined threshold
(τh), this exhibits that the user shoots feature-less objects,
such as walls, and thereby, our application displays a hint
that guides the user to record other places and avoids some
feature-less objects.
Fig.5 shows the screen displays the SURF features of a

image on the mobile platform in real-time.

4.2 Image Vector Bundle Generation
IndoorCrowd2D uses both the image and the sensor data

to detect user motions and fuses these two orthogonal do-
mains of data together to generate the image vector bun-
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Figure 5: Detect SURF feature points of a image in
real-time
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Figure 7: The relationship between user average
speed and the number of optical flow tracking points

dle Z. For each image vector ~zt = [xt, yt, ~ψt, It, t] ∈ Z,
the image data It and timestamp t are obtained directly
from smartphone. The relative spatial location [xt, yt] is
initialized as 0 and calculated based on the difference of
smartphone spatial location between the consecutive image
vectors. The initial heading direction ~ψ0 ∈ ~z0, is acquired
by the compass as long as the user starts capturing. As
it is pointed out by [31], the compass is erroneous in in-
door environment due to the higher magnetic inference in
indoors than outdoors. Therefore, a compass calibration
is necessary before starting the scene capturing. Note that
the calibrated compass value is only applied to set the initial
heading direction ~ψ0 of the user.
Relative Spatial Location Calculation. For each two

consecutive image vector ~zt−1 and ~zt, the angle difference
of heading direction between ~ψt−1 and ~ψt is derived by the
heading offset estimation method [31] and the reading of
gyroscope [29, 42]. Furthermore, the distance |zt−1, zt| is
calculated by fusing the sensory data and the image data.
For the sensory data (accelerometer, gyroscope and com-

pass), step counting method [29,48] is applied to measure the
distance. For the image data, the relative speed of motion of

(a) (b)

Dominant axis

Figure 8: (a). Contour of a building (b). Two dom-
inant axes in red and blue picked up by the contour
sample in cyan

the user between It−1 and It is measured by using an optical
flow model [25]. For a given pair of consecutive images It−1

and It with the same or extremely similar indoor scenes, we
can use the corresponding image feature movements (fea-
ture vectors) to estimate user velocity. The image feature is
defined as some specific structures in a image. Fig. 6 illus-
trates the optical flow model used in the IndoorCrowd2D,
which the smartphone held by a user moves in the ground-
plane with the velocity ~v = (vx, vy, vz)t and the rotational
velocity ~ω = (ωx, ωy, ωz)t. Also, through using a perspective
projection, the user movement trajectory ~̇P (t) in the ground
plane is expressed by the dynamics of the feature vector ~̇p(t)
in the image plane. Importantly, we require users holding
their camera at the same height when applying the optical
flow model. This criteria can be ensured by checking the
relative angle change of the smartphone through gyroscope.
Based on the optical flow model, the feature vector ~̇p(t) is
calculated using the iterative pyramidal Lucas-Kanade [6]
method. The relationship between user average speed and
the number of optical flow tracking points is shown in Fig.
7. According to the result, the optical flow based method
provides auxiliary result when the user average speed is less
than 1m/s.
Since the rotational velocity ~ω can be directly acquired

from the gyroscope sensor, the velocity of the feature vector
~̃v in the image plan can be simplified as:

∂~̇p(t)
∂t

= ~̃v = ṽx ∗ i + ṽy ∗ j (1)

Based on the equation (1), if the focal length of the smart-
phone camera f and the current distance H to the scene are
given, we are able to calculate user velocity as:

~v = ~̃v
H

f
(2)

Next, the timestamp t is used to measure the time du-
ration between every two consecutive images, and thereby,
calculate the distance |zt−1, zt|. To merge the distance in-
ferred from both sensory and image data, IndoorCrowd2D
assigns a weight for each result and use the weighted linear
combination method to achieve the merging purpose. Thus,
the relative spatial location [xt, yt] for ~zt is easily acquired
based on the distance |zt−1, zt| and the heading direction
~ψt.

4.3 Image Vector Bundle Normalization
After the image vector generation process, we further nor-

malize the heading direction ~ψt for each image vector ~zt ∈ Z
using the reduced Manhattan World (RMW) assumption.
Under the RMW assumption, we assume that each building
has two perpendicular dominant axes in 2D and each line
segment (mostly corridors) inside the building is aligned to
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Figure 9: The relationship between image location
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one of the two axes. IndoorCrowd2D applies the following
steps to detect the dominant axes of the building and align
the user heading direction to one of the two dominant axes:
Dominant Axes Detection. We determine the two

dominant axes by analyzing the building outlines that ob-
tains directly from the Google Maps. This concept is identi-
cal to that in [39]. However [39] does not present an imple-
mentation and we hence conduct our own. First, we apply
both the thresholding and the edge detection to the target
image. Then, through utilizing the Canny Detector from the
OpenCV, it extracts the contour of the building, which in
the form of a series of clockwise vectors as illustrated in Fig.
8 (a). The next step is to normalize the vector directions to
0−90 degrees, and also place those angles into a histogram.
Through sampling the contour points every few pixels, the
impact of short contours (contours only one pixel in length)
is avoided. The average angle from the most frequent bins is
taken as the direction of the first dominant axis, whereas the
second dominant axis is perpendicular to the first dominant
axis, as shown in Fig. 8 (b).
Normalize Heading Direction. we check the heading

direction ~ψt for each image vector ~zt. As the gyroscope is
accurate enough for detecting the change of the heading di-
rection [29,42], it is sufficient to normalize the heading direc-
tion into four possible movement direction (↑,→, ↓,←) in a
two-dimensional space. For each image vector bundle Z, the
heading direction ~ψt is normalized by checking whether the
value difference for each consecutive image vector is larger
than 45 degrees.

4.4 Image Vector Bundle Aggregation
The image vector bundle aggregation module is designed

to merge multiple image vector bundles. The main objective
of the image vector bundle aggregation module is to achieve
robust performance across a large variety of image vector
bundles generated by different users, different smartphone
models or various indoor environments. In order to decrease
the complexity of its input, IndoorCrowd2D adapts a hierar-
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Figure 10: The relationship between image location
and the similarity score of image feature matching
(fixed walking direction).

chical approach wherein image vector bundle matching and
merging take place in the following three steps.
pHash Filtering. The primary focus of the pHash algo-

rithm [47] is calculating a fingerprint or hash of a particular
image based upon the various visual features of its content,
rather than processing the raw bits in the image. Unlike
cryptographic hash functions such as SHA-1, in which small
changes in input lead to drastically different hash values,
pHash produces similar hash values if the visual features
of the two images are similar. Thus, the similarity be-
tween two images is computed by calculating the Hamming
distance between the two output fingerprints produced by
pHash. pHash is very fast compared to other image simi-
larity comparison methods, it only takes 65 seconds to hash
100 images. Fig. 9 shows the relationship between image
location and pHash similarity score under different building
interior scenes. The x-axis in this figure represents the linear
distance between the shooting locations of the two images.
According to the result, if we set the similarity score thresh-
old properly, the pHash algorithm is able to reject most of
the incorrect match but only preserve structurally identical
indoor images (images shoot at the same indoor location).
Image Feature Extraction and Matching. To pre-

cisely match two image vector bundles, the SURF descrip-
tors is selected for representing the points of interest on each
image. We choose the SURF algorithm instead of SIFT be-
cause it is more robust, and its speed is sufficient for real-
time processing, which is critical when dealing with crowd-
sourced data. In our model, given a query image Ia ∈ ZA

and a set of candidate images in ZB , we perform a match
in the following manner: i) Construct a codebook of “vi-
sual features" through using the SURF algorithm; ii) Quan-
tize these visual feature descriptors by the k-nearest neigh-
bor (kNN) algorithm where k = 2; iii) Use Euclidean dis-
tance as a similarity metric for computing the number of
good matches. The total process take around 1.5 seconds to
match two images. Fig. 10 shows the correlation between
distance and the similarity score of image feature matching.
Similar to Fig. 9, the x-axis in this figure represents the lin-
ear distance between the shooting locations of the two im-
ages.The result exhibits that by using our kNN-based image
feature matching algorithm, we are able to set a similarity
threshold that only preserve the images, which belongs to
the same location (distance less than 1m).
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Longest Common Subsequence Image Vector Ag-
gregation. Once a match between two images is detected,
IndoorCrowd2D calculates the similarity scores of the two
corresponding image vector bundles (IVBs) based on the
longest common subsequence (LCS) metric. Let ZA,ZB be
the two IVBs with the length of i and j, respectively. Also,
given that system metric is δ and matching threshold is ε,
the LCS metric for the two IVBs is defined as follows:

L
(
ZA
i ,Z

B
j

)
=



0, if i = 0 or j = 0;

1 + L(ZA
i−1,Z

B
j−1),

if d(~zAi , ~zBj ) ≤ ε and |i− j| < δ;

max(L(ZA
i ,Z

B
j−1), L(ZA

i−1,Z
B
j )),

otherwise;

where parameter δ is used to control the maximum length
difference between the two IVBs and ε represents the dis-
tance threshold. The similarity score SS for the two IVBs
based on [50] is expressed as follows:

SS(ZA,ZB) = maxf∈F
L(ZA, f(ZB))
min(i, j) (3)

where F stands for a set of all possible translations. In our
prototyped IndoorCrowd2D, if SS is larger than threshold
ssh, two IVBs can be merged into one larger IVB.

4.5 Hallway Skeleton and Building Interior View
Reconstruction

In the last module, we leverage aggregated image vector
bundles to generate the hallway skeleton and the indoor in-
terior view. The hallway skeleton represents the topology of
the hallway for navigation purpose. As it is mentioned be-
fore, IndoorCrowd2D selects an indoor spatial model to rep-
resent the environment. Hence, we need to further project
our aggregated image vector bundles to the indoor space
cell to reconstruct the hallway skeleton.The indoor interior
view is generated separately by leveraging a δ-building in-
terior view generation algorithm. This algorithm is a com-
bination of several state-of-the-art panorama reconstruction
algorithms. The end result of IndoorCrowd2D is an inter-
active building interior view reconstructed from the output
results.
Reconstruct Hallway Skeleton. For each floor, we se-

lect the aggregated image vector bundles Zaggr and project
it to the indoor space matrix based on our indoor spatial
model. The whole procedure is as the following: First of
all, there is a homogeneous grid cell matrix to represent the
indoor space, and also, each cell inside the matrix is initial-
ize as number 0. Then, we map Zaggr to the cell matrix
by checking the relative spatial location [x, y] of each image
vector ~zi ∈ Zaggr. If there exists an image vector ~zi, which
corresponds to a particular cell ci,j , we therefore increase
the value of ci,j by 1. We then store the reference number
[i, aggr] of image vector to ci,j The process is continuously
repeated until all image vectors in the aggregated image vec-
tor bundle Zaggr are projected to the indoor space matrix.
Finally, the cells with value higher than a threshold hcell
(means this position is accessible) inside the indoor space
matrix is chosen to represent the hallway skeleton.
δ-Building Interior View Generation. Up to this

step, the hallway skeleton is completely generated. How-
ever, we also interested in the generation of a visually ap-

pealing building interior view. Therefore, we choose to use a
cylindrical panorama, as such panorama present users with
a more realistic representation of the indoor environment.
To generate a cylindrical panorama, the qualified images

inside the aggregated image vector bundle Zaggr have to
satisfy with: i). the user’s locations of these images should
be as close as possible. ii). the viewing direction of these
images should cover the scene in a wide angle (e.g. 360
degree for a 360-panorama). iii). every two images should
have appropriate overlap part. For criteria i and ii, we use
the reconstructed hallway skeleton for accurately selecting
the candidate images. First, for a particular cell ci inside the
indoor space matrix, we check if it is accessible (the value
is larger than hcell if it’s accessible). Second, if their exists
more than one image vector ~z corresponding to ci due to
image vector aggregation, we then select images inside these
image vectors as candidate images because they belongs to
the same location, and therefore they should satisfy criteria
i. Third, we check the normalized heading direction of these
candidate images to make sure these images share the same
or consecutive orientation values, which satisfies criteria ii.
Finally, we send the images passed the check to a panorama
reconstruct pipeline.
The panorama reconstruct pipeline performs incremental

image stitching through a feature detector module, a fea-
ture matching module, and an inlier pair match estimation
module to select the best matches (shown in Fig. 11 (a)).
Although the shortcomings of our approach for image stitch-
ing include a slightly slower speed and a less accurate process
comparing to state-of-the-art softwares (e.g., Autostich [8]),
the results are more accessible dealing with non-overlap and
textureless objects (criteria iii), which makes it particularly
suitable for our crowdsourced image data.
Fig. 11 (a) exhibits the δ-building interior view genera-

tion process in a typical scenario. The output of RANSAC
algorithm is a homography matrix, which establishes the
number of features pairs that match closer than a predefined
threshold. Once the homography matrix is computed, it is
utilized to overlap the source image with the target image.
In our scenario, however, the crowdsourced images may ex-
hibit strong differences in light and white balance due to the
same scene being captured from different perspectives and
by different people. In order to obtain the good panorama
images, it is necessary to perform images blending[8] first to
smooth out the discontinuities between the two overlapping
pictures before applying the homography matrix.

5. IMPLEMENTATION
The prototype of the IndoorCrowd2D system is composed

of two parts: a data acquisition interface runs on Android
mobile device and an indoor interior view pipeline deploys
on a cloud.
For the data acquisition interface, we implement and test

it on Android 4.0 KitKat. Three different smartphone mod-
els are chosen to test the compatibility, includes Google (LG)
Nexus 5, Google (LG) Nexus 4, and SAMSUNG Galaxy
Nexus. The reconstruction pipeline is implemented on Mi-
crosoft Azure platform using a network optimized A9 virtual
machine (16 cores, 112 GB memory and Ubuntu Linux).
1)Mobile Application. Our mobile application enables

the crowd to capture the building interior view. These user-
generated-images can be further uploaded to cloud from user
smartphones. For saving bandwidth, we pre-process the
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Figure 11: (a) The δ-building interior view generation process in a room scenario, (b) Building location
detection by dropping pinpoint

sensing data and filter out the redundant and low-quality
part. The qualified datasets are zipped and separated into
5MB chunks for transmitting. The transmission only starts
when Wi-Fi connections are available.
Real-time Data Quality Detection. To support on-

board real-time image processing, we leverage an open-source
OpenCV library to perform SURF feature extraction, and
to process the extracted image and detect its quality further.
To reduce the running time of the SURF feature detection,
we tune the parameters to produce fewer SURF features per
image. Note that this modification can reduce the feature
detection accuracy. However, since we only need to judge if
the numbers of features are fall below a threshold τfea (pre-
vent user shooting feature-less object), the loss of accuracy
does not affect our system.
Application Settings. We create a interactive setting

interface to allow users input the building floor information.
As shown in Fig.11 (b), once a user clicks the setting button,
a pinpoint on the map appears to indicate their last known
GPS location. These results may be inaccurate, which we
address by allowing the user to drag and drop the pinpoint
onto the correct map position. Note that we do not need
users to provide very accurate location information, as this
location information is only used for building detection. Our
system works well as long as the pinpoint falls inside the
outline of the target building. Once the user complete the
previous step, a new screen will appear prompting the user
to input their current floor number. Their input is then
sent to the cloud along with building location data. Also,
the input data is stored in our application. User does not
need to re-input it unless he/she starts reconstruct a new
building floor.
2)Cloud Computing Backend. The IndoorCrowd2D

cloud computing backend is built upon Windows Azure vir-
tual machine instances with Ubuntu Linux. Based on func-
tion, we can divide cloud computing backend into two layers:
i) a communication layer which receives and stores the in-
coming crowdsourced image and sensory data. ii) a data
processing layer to process received data and generate hall-
way skeleton and the interior views of the building.
Communication Layer. In this layer, we select an Tor-

nado web server to receive crowdsourced data. The Tornado
http server is a powerful, flexible web server. The mobile
application send zipped data to Tornado web server in real-
time through HTTP requests.
Data Processing Layer. Data processing layer process

the crowdsourced data and output the final result. In the
first step, our program first stores the received raw data into
MongoDB. Then, our task scheduler (APScheduler) loads
the data and send it to the hallway skeleton and the interior
view reconstruct pipeline. Several function modules com-

Figure 12: Screenshot for visualizing building inte-
rior view and hallway skeleton

pose the pipeline and are all controlled by a task coordina-
tor. Once the reconstruction is finished, the task scheduler
stores the result back to the database and wait for new tasks.
For visualizing the result, the WebGL technique is applied
to create an interactive online GUI. It in charges of the user
input and the result display (shown in Fig. 12). However,
users can also ported our data to other online map services
by using its API.

6. PERFORMANCE EVALUATION
We evaluate our IndoorCrowd2D prototype in the follow-

ing scenario: untrained and uncorrelated volunteers use our
mobile application capturing indoor scenes in a typical col-
lege building to reconstruct the building interior and skele-
ton. We collect data on the college buildings at different
times of day, and over a period of five months. Before con-
ducting the experiment, 55,453 images of two different build-
ings (Teaching Building (TB) dataset and GYM dataset)
from 1,151 datasets are successfully uploaded by 25 users.
Some places were captured multiple times. Fig. 13 (a) shows
the distribution of the basic elements inside the data.

6.1 Evaluation Methodologies
The ground truth hallway skeleton Strue = {c1, c2, .., cn}

is learned from the building floor map. Therefore, once we
generate a building hallway skeleton Sgen, the precision, re-
call, and F-measure of IndoorCrowd2D can be defined as
follows:

precision =
|Sgen

⋂
Strue|

|Sgen|
(4)

recall =
|Sgen

⋂
Strue|

|Strue|
(5)

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(6)
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Figure 13: IndoorCrowd2D performance evaluation for: (a) The distribution of the crowdsourced building in-
terior data (b) Building hallway skeleton reconstruct computational latency (c) Tolerance of various lightning
conditions

Note that, these performance metrics not only reveals the
accuracy of the generated building hallway skeleton, but also
affects the quality of panorama generation (because we use
the hallway skeleton as the auxiliary information to help
generate indoor panorama with the correct position).
For comparison purpose, we compute the precision, recall,

and F-measure for both our method (with sensory and image
data) and image only method (without sensory data). The
image only approach is widely used in computer vision com-
munity. They assume the images are crowdsourced from the
Internet. In this approach, the spatial relationship of each
image is deduced by processing the visual information (e.g.
through feature matching).

6.2 Evaluation Results
Hallway Skeleton Reconstruction Performance. As

shown in Fig. 16, we compares the performance of Indoor-
Crowd2D with the image only approach. The precision, re-
call, and fall-out are computed over the entire set of pictures.
The results exhibit that IndoorCrowd2D achieves a precision
around 85%, a 100% recall and a F-score around 95% for the
two datasets. We find that existing state-of-the-art vision
algorithms still exist some drawbacks by further checking
the results. In our crowdsourced test datasets, these com-
puter vision algorithms tends to give incorrect results when
encounter images of extreme distance/angle, feature-less ob-
jects (e.g. walls). According to the results, our image and
sensor hybrid method is more robust to errors and outliers
compare to the image only method.
Computational Latency. IndoorCrowds2D computa-

tional latency is highly dependent upon the time needed for
the computer vision based image processing, especially the
dominating subtask for aggregating two image vector bun-
dles. Fig. 13 (b) plots the CDF graph of the single-threaded
performance for matching two image vectors inside two dif-
ferent vector bundles Z. Given that each image vector
bundle contains around 20 image vectors in general, the per-
formance of our system is comparable to the state-of-the-art.
Tolerance of Various Lightning Conditions. To test

IndoorCrowd2D under varying lighting conditions, we man-
ually select datasets that are captured from different periods
of time in a day and categorize them into two groups: day-
light datasets and night datasets by judging its images and
timestamp. We keep the size of daylight dataset and night
datasets equal.

25 IVBs
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Dominant Axes

Figure 14: A typical gradually build-up scenario for
IndoorCrowd2D (TB Dataset)

(a) Output Panorama

(b) Ground Truth Panorama

Figure 15: Quality comparison between the crowd-
sourced panorama (a) and the ground truth
panorama (b). (TB Dataset)

We perform the following experiment: We randomly re-
place part of the daylight dataset, which is 10% of the
dataset size in our experiment, with the same amount of
night dataset. We keep doing this process and conduct-
ing the match on each newly generated dataset until the
dataset becomes all-night. Fig. 13 (c) shows the skeleton
precision with different portions of night IVB datasets. The
result shows that the our building interior view reconstruc-
tion pipeline is robust to various lighting conditions.
Allowing Gradual Skeleton Build-up. Our build-

ing hallway skeleton reconstruction pipeline allows gradual
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dataset
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Figure 16: IndoorCrowd2D performance evaluation (precision, recall, F-measure) for (a)-(c) TB dataset and
(d)-(f) GYM dataset

build-up to save computational cost. IndoorCrowd2D auto-
matically saves the previous reconstruction state when all
the datasets are being processed. When new datasets ar-
rive, it will restore the previous state and continue process-
ing. Fig. 14 presents a typical gradually build-up process
of the hallway skeleton construction, with new image vec-
tor bundles being added progressively. For the purpose of
better visualization, we manually check each image inside
the merged image vector bundles, and find its best possible
position (by rotating it if possible) on the ground truth floor
map. Note that, in this figure, we do not replace the previous
longest skeleton with the newly generated one. Therefore,
the final result shown in this figure is slightly different from
the real data.
Quality Rank of the Resulting Panorama. Fig. 15

(a) presents a typical crowdsourced panorama output by
the IndoorCrowd2D. Comparing with the ground truth, the
output panorama preserve most of the details for an in-
door scene. Thus, the overall quality of the crowdsourced
panorama and the ground truth are evenly matched. How-
ever, since the crowdsourced image are taken by different
users with different angles, and thereby, the resulting crowd-
sourced panorama inevitably containes some inconsistency
and distortion parts.
Mobile Application Usability Study. 25 volunteers

filled out a survey to evaluate the usability of our mobile ap-
plication after they finished capturing the building interior.
The survey contains two yes-no questions: a). “The usage
instructions of the IndoorCrowd2D are easy to perform?"
b). “Do you think the real-time feedback displays on the
screen helps?" The results show that 80% of the volunteers
agree on the first question and 88% of the volunteers agree
on the second one. According to the results, the majority
users believe that our mobile application alleviates the bur-

den of building interior view reconstruction and encourages
them to contribute high quality data.

7. DISCUSSIONS AND LIMITATIONS
Digital Floor Plan as A-priori Information. If the

digital floor plan of a building is available as prior knowl-
edge, then it can be utilized to detect the actual position
of each room and corridor. In this case, we can adjust the
image vector to the correct position by solving a non-linear
least squares problem. We may for instance use the Ceres
Solver to perform sensor data fusion, in order to estimate the
image vectors’ correct positions and orientations inside the
building. Since we no longer rely on the Manhattan world
assumption (we do not need to calculate the dominant axes),
our system will thus be able to support non-predominantly
rectangular buildings.
Reconstruct Building Skeleton for an Open-area.

Unlike corridors and rooms, an open area such as a lobby
may allow users to approach from different directions. Image
vectors generated by different users will hence be aggregated
in this area, due to our reliance on image features for match-
ing pairs of image vectors. We state that IndoorCrowd2D
is still able to provide reliable results in this special case
due to the following reasons: As mentioned previously, for a
particular location, if there exists more than one image, and
these images share the same consecutive orientation values,
a panorama will be generated by δ-building interior view
generation algorithm. In an open-area, a 360◦ panorama
would therefore be generated once sufficient key frames are
gathered from all directions. The subsequent image vectors
that captured the same open-area would then all be matched
to the 360◦ panorama and converged into a point.
Reconstruct Multi-Floors in Single Round. Indoor-

Crowd2D requires users to input the number of floors they
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are on before they start capturing a scene. Once they input
the correct floor number, we ask the user to stay on the same
floor while capturing data. Towards the goal of enhancing
the usability of IndoorCrowd2D, however, we plan to sup-
port 2.5D building interior and skeleton reconstruction in
the future. According to [42], stairways can be detected
by comparing the accelerometer patterns when the user is
walking on stairs.
Non-predominantly Rectangular Buildings. As In-

doorCrowd2D assumes there is not any prior-knowledge avail-
able about the building skeleton, we utilize the well estab-
lished reduced Manhattan world assumption to compute the
dominant axes for each building based on its outline. For re-
constructing non-predominantly rectangular buildings, the
key challenge is the dominant axes may differ from our out-
put result. Hence, we need to leverage a digital floor plan to
detect the actual position of the main skeleton of the build-
ing. In our future work, we plan to solve this problem by
creating a system letting user providing building skeleton
information.
Energy Consumption. IndoorCrowd2D mobile appli-

cation runs on a user’s smartphone. We measure the energy
consumption of our mobile application by using the drop
rate and the residual capacity of the battery. The result
shows that our mobile application takes 1800 mW on aver-
age for capturing the scene in four minutes. The inertial
sensor consumes about 35 mW when user capturing the en-
vironment. Photo shooting takes an average of 300 mW for
continues shooting with a resolution setting of 640x480 and
a time interval of 3s. However, unlike other mobile crowd-
sourcing systems, our mobile application does not require
users to continues running a daemon process in the back-
ground. Hence, capturing several indoor locations should
not constitute significant power consumption.

8. RELATED WORK
Indoor Smartphone Sensing. Recently, many researches

focus on utilizing smartphone sensing technique to deter-
mine the status of a pedestrian in an indoor environment
[3,10,11,23,29,31,39,42,43,46,49], such as heading direction,
location and walking trajectory. For example, [11] jointly
utilizes accelerometer, gyroscope and compass to obtain the
user heading direction information. This method is limited
due to error accumulation of the inertial sensors. Further-
more, [31] develops a system to accurately detect user head-
ing direction by analyzing user walking in depth. Addition-
ally, it is able to predict and reduce the magnetic interference
of compass data. [32] utilizes camera picture combined with
computer vision technique to detect the changes of heading
direction by calculating the vanishing points. [39], similar to
[32], leverages front camera pictures to calculate the building
internal line-shape objects as a hint to detect user walking
direction. For determine user location, the traditional way
is using Wi-Fi fingerprint to locate the user. [29] applies col-
lected user trajectory information to constrains the possible
user location by physical walls and use the crowdsourced
Wi-Fi data to establish a fingerprint database.
Digital Floor Plan Generation. There are many stud-

ies about the building floor plan generation, most of which
focus primarily on the sensor data aggregation [2,19,35,41].
[2] uses crowdsourced data from smart phone sensors to
automatically and transparently construct accurate motion
traces. [19] utilizes both image and inertial data to infer the

spatial information for an indoor environment and eventu-
ally generate an indoor floor plan. Our work differs from
theirs is that our system aims to reconstruct visually appeal-
ing indoor interior view, instead of a floor plan. Therefore,
we only rebuild a simple hallway skeleton leads to accurately
locate reconstructed interior views and helps user navigate
through these views.
Indoor Scene Reconstruction. Lately, several researches

are focused on indoor and outdoor scene reconstruction [30].
[33] develops a smartphone application to let user capture a
panorama of indoor scenes. Basically, users are able to label
the edge of the room directly at the panorama. Accord-
ing to the labels, the application is capable to reconstruct
room shapes based on the Manhattan World assumption.
[22] proposed a set of key-frame selection algorithms based
on crowdsourced sensor-rich videos to automatic generate
outdoor panorama. In addition to 2D scene reconstruction,
indoor 3D modeling is also a hot research topic. Some stud-
ies leverage professional equipments, such as depth sensors
[45] and laser scanners [5, 44] to reconstruct indoor scene.
Other works like [13, 26] uses Kinect, a commercial depth
sensor to reconstruct 3D model. Recently, Google lunches
the Project Tango [28] that contributes to a tablet for mo-
bile 3D sensing. Although the output 3D models of these
approaches are impressive, specialized equipments are un-
adoptable in our crowdsourcing setting. Moreover, the com-
puter vision community develops several computer vision
techniques to reconstruct 3D models directly from images
[15, 16]. They use some state-of-the-art 3D reconstruction
techniques including Structure from Motion [1,36,37,40] and
Multiview-stereo [17, 18]. To enhance the result quality, an
user-labelling sub-system is further developed in a recent
work [45]. However, because these computer vision based
3D reconstruction algorithm still exists some drawbacks, the
images used for 3D reconstruction need to be carefully se-
lected [14]. Thus, these techniques are not suitable for our
crowdsourced scenario.

9. CONCLUSION AND FUTURE WORK
We have described the design, implementation, and eval-

uation of IndoorCrowd2D – a novel crowdsourcing system
empowered by off-the-shelf smartphones for building interior
reconstructions. The prototype is readily deployable in real-
world scenarios. As our future work, specific issues related
to a crowdsourcing deployment, such as user recruitment,
incentive mechanism and privacy preservation, will be fur-
ther focused on. Once fully hardened, IndoorCrowd2D is
expected to provide indoor panorama and geo-data for each
individual floor of any building around the world. Indoor-
Crowd2D is expected to extend existing online map services
to the indoor environments at an unprecedented scale, which
is currently cost prohibitive. IndoorCrowd2D can also serve
an important stepping stone towards the ultimate goal of
economically-viable massive indoor 3D model reconstruc-
tion.
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