
BORA: A Bag Optimizer for Robotic Analysis

Jian Zhang∗§¶‖, Tao Xie†, Yuzhuo Jing∗, Yanjie Song∗, Guanzhou Hu∗, Si Chen‡, and Shu Yin∗§¶‖
x

∗School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Email: {zhangjian, jingyzh, songyj, hugzh1, yinshu} @shanghaitech.edu.cn
†Department of Computer Science, San Diego State University, CA 92182, USA Email: txie@sdsu.edu
‡Department of Computer Science, West Chester University, PA 19383, USA Email: schen@wcupa.edu

§Shanghai Engineering Research Center of Intelligent Vision and Imaging, China
¶Chinese Academy of Sciences, Shanghai Institute of Microsystem & Information Technology, China

‖University of Chinese Academy of Science, China
x
Corresponding Author

Abstract—We present BORA (Bag Optimizer for Robotic
Analysis), a file system middleware that optimizes the acqui-
sition of bags, which are specially formatted files used to store
timestamped ROS (robot operating system) messages. BORA sits
between ROS and an existing file system to conduct semantic-
aware data pre-processing. In particular, it categorizes ROS
bag data into multiple groups with each having a distinct
label. BORA predigests data index constructions and reduces
file open time via a hash-based label management scheme. It
is also capable of providing ROS analytic applications with
only data needed without a sequence of data searching and
locating operations. We implement a BORA prototype, which
is then integrated into three computing platforms: a single-
node server, a four-node PVFS storage cluster, and a Tianhe-
1A Supercomputer storage subsystem. Next, we evaluate the
BORA prototype on the three platforms using four real-world
ROS applications. Our experimental results show that compared
to a traditional bag management scheme BORA improves data
acquisition performance by up to 11x. In addition, it offers up to
10x data acquisition performance improvement and 3,100x bags
open improvement under a swarm robotics data analysis scenario
where data is retrieved across multiple bags simultaneously.

I. INTRODUCTION

Robot operating system (ROS) is an open-sourced meta-

operating system framework that consists of libraries and tools

to help software developers create robotic applications such as

simultaneous localization and mapping (SLAM) [1], grasping

[2] and navigation [3].

ROS works alongside a traditional operating system like

Linux to facilitate developers to resolve some specific is-

sues (e.g., distributed computation, software reuse, and rapid

testing) that appear in the development of robotic software.

Besides conventional robotic applications, robotic control and

analysis systems such as industrial robotics [4], UAV (un-

manned aerial vehicle) swarms [5], and low-power rescue

devices [6] are also developed on top of ROS.

The abstractions provided by ROS allow developers to

design and implement robotic applications without considering

underlying systems. A robot control system usually comprises

multiple processes that perform computation. Each process

is called a node in ROS. For example, one node controls a

laser range-finder while another node controls wheel motors.

Nodes communicate with each other by passing messages,

which are routed via logical publish/subscribe buses called

topics [7]. A node sends out a message by publishing it to

a given topic, whereas a node that is interested in a certain

kind of data will subscribe to an appropriate topic [7]. In

general, publishers and subscribers are not aware of each

others’ existence, which decouples information producers from

consumers. Fig. 1a shows the ROS stack. ROS provides a tool

called rosbag that can record the messages published on

one or more topics to a specially formatted file called bag and

then replay those messages later. The message recording and

replaying capabilities form a powerful way to test some robot

software: a developer can run a robot only a few times while

recording some relevant topics, and then replay the messages

on those topics many times to experiment with the software

that processes those data [7]. Serving as a fundamental storage

abstraction in the ROS framework, bag works well as it reaches

its original expectation.

However, more than just replaying messages many applica-

tions nowadays need to extract messages of certain topics from

bag files for later analysis [8] [9]. For example, SLAM needs

to extract image data from bag files to build a point cloud and

further generate a map based on inertial measurement data

[1]. To achieve this goal, the rosbag tool needs to perform

a sequence of operations including scanning the offset of

chunk sections, collecting data types and message definitions,

as well as locating and retrieving message records via seek

operations. Besides, in order to provide two-dimensional data

queries such as (topics, time range), rosbag has to collect

all the timestamps of message records and then build a tree-

structure to target the requested messages in a range between

start time and stop time [7]. The current way of extracting

messages from bag files is inefficient due to the following

reasons: (1) each time a developer opens a bag file, ROS needs

to first scan it to gather message location information and

statistics for high-level indexing, which is a time-consuming

repeated effort; (2) a developer must write a script to either

replaying a bag file to subscribe the messages of interests or

iterate over messages in the bag, which is neither efficient nor

reusable; (3) since bag is not originally designed to handle

complex queries for data analysis, it is very time-consuming

to extract message records of multiple topics, especially when

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

Topic1 Topic2

sample.bag

Recorder

Publisher:

Subscriber:

Camera Gyroscope

Data sharing

Data analysis

bag1 bag2 bagN

...

Robot1 Robot2 RobotN

Data CenterSmall Cluster

ROS App1
(Multithreading)

ROS Framework
ROS Libs,

ROS publisher/subscriber
...

Operating System
(e.g., Linux)

(a)

ROS AppN
(Multithreading)...

Bag Header
Chunk1

Message data Index entry: (time, offset)

...

He
ad

er

He
ad

er

Connection Info
Chunk Info 1, 2, ..., N

...

(b) (c) (d)

......

......Chunk2

He
ad

er

......ChunkN

Big data sharing

AI analysis

He
ad

er

He
ad

er
He

ad
er

Index1

...

Index2

IndexN

Fig. 1: (a) ROS stack; (b) bag format; (c) an example of a single-robot system; (d) an example of a swarm of robots system.

the size of a bag file keeps growing.

To provide rich query capabilities, some studies suggest that

a database system could be used to replace the current bag

file mechanism [10]. We argue, however, the advantages of a

file system can better fit the needs of ROS data storage and

management. First of all, a ROS bag file has a native ability to

quickly store a large volume of data in a chronological order,

which is essential for robotic applications [11]. Second, the

ROS bag file abstraction ensures prompt data migration either

from robots to a desktop computer or from local computers

to a remote cluster [12]. Third, a ROS bag file can store

poly-type data including structured data (e.g., GPS locations,

inertial measurements, pressures, etc.) and unstructured data

(e.g., images, laser scans, videos, etc.) [13]. On the contrary, it

is hard for a database system to accomplish this task. Finally, a

file system ensures that ROS can concurrently collect multiple

bag files from swarm robots and provide parallel cross-bag

data retrieving capabilities.

To solve the problem of inefficient ROS message acquisition

while retaining the advantages of the bag mechanism, in

this paper we present BORA (Bag Optimizer for Robotic

Analysis). BORA is essentially a file system middleware

that optimizes ROS bag data storage and acquisition. It sits

between the ROS framework and an underlying file system to

conduct topic-conscious bag data re-organization on a storage

node. Based on the components of a bag, BORA is able to

re-organize its data into multiple groups with each having a

distinct label and manage these data groups through a hash-

based index. Thus, BORA can provide ROS applications with

a well-organized data layout and a simpler bag data locating

scheme. Besides, it provides a coarse-grain secondary index

mechanism to provide data that meets some particular period

predicates. As a result, BORA can reduce bag open time and

increase the efficiency of interested data retrieving.

The main contributions of this paper include: (1) we pro-

pose BORA, a first file system middleware to optimize data

organization of ROS bags for robotic analysis. BORA is

designed to enhance data query capability of existing bag-

based ROS storage systems with a minimum cost; (2) we

implement a BORA prototype and then integrate it into three

computing platforms (i.e., a single-node server, a four-node

cluster, and a Tianhe-1A storage subsystem under four real-

world robotic applications; (3) a comprehensive experimental

study is provided to fully evaluate the efficacy of the BORA

prototype; (4) BORA can be readily extended to most robotic

data analytic and implementation applications, which also

require a similar data extracting and locating procedure. We

plan to release the source code of BORA for public use.

The rest of the paper is organized as follows. Section II

provides the background and motivation of this research. The

design and implementation details of BORA are presented

in Section III, which is followed by an evaluation of BORA

shown in Section IV. While Section V discusses some lessons

learned from this research, Section VI summarizes the related

work. Finally, Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first briefly introduce bag, which is the

storage mechanism of ROS. Next, we explain the differences

in bag data processing between the existing way and our

proposed BORA-assisted approach.

A. Overview of ROS Bag

A bag is a file format in ROS for storing message data.

A message is a simple data structure that comprises multiple

typed fields. All bags are files with a .bag extension. An array

of tools have been built to allow a developer to store, process,

analyze, and visualize them [7]. Bags are typically created

by a tool like rosbag, which subscribes to one or more

ROS topics and stores serialized message data in a file as

it is received. Fig. 1b shows a typical ROS bag file format.

A bag is comprised of an array of diverse records including

bag header, chunk, index, connection, and chunk info. The bag

header stores information about the entire bag (e.g., the offset

to the first index record and the number of chunks) [7]. The

rosbag tool stores messages in the unit of chunk and appends

an index record to each chunk. An index record contains

offsets and timestamps of all messages in the preceding

chunk as shown in Fig. 1b. Index data is scattered all over

a bag. The connection info record contains metadata about

a connection being established, including typing information

and routing information. After all messages are recorded,

rosbag generates a chunk info record for each chunk and

then appends them to the end of the bag. A chunk info record

stores the offset of its corresponding chunk and timestamps of

the earliest and the latest messages in that chunk. A detailed

description of bag format can be found in [7].

There are two typical ways of using bags: (1) online use

in a ROS computation graph where a developer can collect

certain message data in a bag on the fly to control real-time

robots; (2) offline use in data replaying where a developer can

echo data on screens in the time order of message collecting.

A ROS computation graph is a peer-to-peer network of ROS

processes that are processing data together [7]. Fig. 1c shows

a simple ROS computation graph. There are some APIs like

rebagging available for developers to iterate over a bag and

extract messages that match a particular filter into a new bag

file. Furthermore, some tools allow developers to automatically

update bag files when messages are out of date [7].

Fig. 1c also illustrates an example of a single-robot ROS

system. In this system, the Camera node and Gyroscope node

publish messages to two different topics (i.e., Topic1 and

Topic2), respectively. After the command rosbag record

-O sample.bag Topic1 Topic2 is executed, rosbag

creates a new node called Recorder, which subscribes to the

two topics (see Fig. 1c). It then writes all messages received

into a file called sample.bag. The amount of data collected in

a bag file varies from a few hundred megabytes to hundreds of

gigabytes or even larger. The sample.bag file is typically stored

in a workstation or a small cluster. It can be then analyzed in-

situ or shared with a remote server. In addition to many single-

robot systems, some ROS applications demand an autonomous

robot swarm, a bio-inspired concept that provides a robust and

flexible robotic system by exploiting a large number of robots.

This concept allows for the coordination of robots in order to

cooperatively perform a single global task. Fig. 1d shows an

example of a robotic swarm. Each of them generates a bag

file, which is then dumped to a data center where a sufficient

storage capacity and computational power are available to

store and analyze the huge amount of data collected.

B. New Requirements of ROS Bag Usage

With rapid development of artificial intelligence in recent

years, ROS applications with advanced data analysis require-

ments are emerging [14] [15] [16]. For example, SLAM needs

to extract vision data from bags to build point clouds, and

then, generate an environmental map with landmark data

from bags to help robots locate themselves in an unknown

territory [9]. Object and pattern recognition techniques require

to extract RGB image data, image data with depth info, and

camera pose info from bags to perform training of object

models, which are then used for detection [17]. Assisted

by a spectrum of new artificial intelligence techniques, ROS

developers are applying various deep learning algorithms such

as CNN (convolutional neural networks), RNN (recurrent

neural networks), and GAN (generative adversarial networks),

to train models for pattern recognition [18], decision making

[19], and controls on robots [20]. These algorithms require

a set of environmental information as inputs, which leads to

the need of retrieving a significant amount of structured and

unstructured data from bags. How to efficiently extract data

from bags for model training becomes a new challenge. The

main reason is that bags were originally designed in a log-

structured way to quickly record sensor data in chronological

order. The rosbag tool needs to scan the entire bag to locate

the scattered messages and iterate over them to find the wanted

data. Besides, the performance potential of underlying storage

devices cannot be fully exploited as a file system rarely has

semantic information from applications to optimize its I/O.

To meet the data analysis requirements of these emerging

ROS applications, some researchers proposed to replace exist-

ing bag mechanism with a sophisticated database management

system (DBMS) in order to enhance the performance of

queries for ROS data analysis [21]. We argue that a database-

backed message logging system might be inadequate to ROS

applications. First, the current ROS publisher/subscriber mech-

anism supports a data rate of GB/s when running an advanced

robot such as PR2 [22]. A DBMS, however, can hardly

collect continuous large volumes of data in real-time. Second,

robot developers often store robotic data on various comput-

ing platforms with distinct storage capabilities ranging from

embedded devices, laptops, to clusters [10]. A DBMS may

be unsuitable for an embedded computing platform. Third,

robotic data consists of both structured data (joint angles,

transpose vectors, altitude, latitude, etc.) and unstructured data

(laser scans, images, motion pictures, etc.) [11]. However, a

DBMS might not be able to support a rich querying interface

to deal with mixed data structures.

To verify whether a DBMS is an appropriate substitute

for an existing file system utilizing the ROS bag mecha-

nism, we conducted a preliminary experiment on an Intel

workstation with 16 GB main memory and two 256 GB

NVMe SSDs. In particular, we measured the performance of

three representative database systems (i.e., a NoSQL database

called Areospike [23], a traditional SQL DB named Post-

greSQL [24], and a time series database called InfluxDB [25])

and one file system (i.e., Ext4) when 49,233 TF (transform

stamped info) messages were inserted (see Fig. 2). The TF

messages were extracted from a real-world Handheld SLAM

bag [26]. We found that it only took Ext4 130 milliseconds

to append 49,233 TF messages to a bag file. To insert the

same set of TF messages, the three database systems are 51.8x,

93.6x, and 3,694.6x slower than Ext4, respectively. In addition,

InfluxDB cannot support complex array structures, and thus,

is inadequate to process ROS data, which could be multiple

dimensional. For example, an IMU (inertial measurement

unit) message contains four float64 data structures with each

consisting of a three-dimensional array [26]. A DBMS also has

some limitations in sharing data among systems with diverse

configurations. The poor message insertion performance of

the database systems plus their inadequacies in ROS data

processing motivated us to stick to the path of development of

a file system middleware to enhance the performance of data

acquisition of bags.

Motivation 1: there is a great need to develop a file system

middleware that can optimize ROS bag organization so that

the overhead of data traversal can be largely reduced while

the original useful bag abstraction can be retained. In this way,

robots can store and share a high-volume of data quickly after

the data has been collected. Existing I/O middleware systems

like PLFS [27] and ADIOS [28] cannot be applied without

Ext4 Aerospike PostgreSQL InfluxDB
0

2

4

6

8

10

12

14

Ti
m
e
(lo

g)
m
s

130ms

6,730ms
12,170ms

480,300ms

49,233 TF messages (12MB)

Fig. 2: A performance comparison in message insertion.

deep modification to optimize ROSbag. We conducted a group

of experiments to compare PLFS with Ext4 and XFS. It shows

that PLFS takes 2x longer time to write a 3.9GB bag file, and

spends 1x longer time to retrieve a topic of data (Fig. 3).

ADIOS requires substantial changes in the application code,

which becomes a burden for a ROS application developer.

DO
2.2GB

HS
3GB

RS
3.9GB

DO
15.4GB

HS
21GB

RS
27.3GB

(a)

0

100

200

Ti
m
e(
s)

Ext4 XFS PLFS

A B C E F

(b)

0.0

2.5

5.0

7.5

Fig. 3: (a) bag write (notions refer to Table II);

(b) bag read (bag size: 2.9GB, notions refer to Table III).

The rosbag tool builds an index for all messages during

an open operation to support data acquisition. For example, the

command bag.read_messages(topics=[‘foo1’,

‘foo2’]) can read out messages of two different topics

(i.e., foo1 and foo2) from a bag. Fig. 4a demonstrates the

steps within a traditional bag open operation using the default

rogbag API. There is a time-consuming iteration after the

chunk info is read as rosbag traverses the chunk info list

to locate the corresponding position of the index and build

a hash table for message queries. The open operation takes

O(N) of time, where N is the number of entities in the chunk

info list. In our experimental studies, we found that opening

a 21GB bag took more than seven seconds. Note that the

experiment was carried out on an SSD (solid state drive). The

implication is that simply replacing a slow storage device like

HDD (hard disk drive) with a high-performance SSD cannot

solve the problem of inefficient bag data retrieval.

Motivation 2: there is a great need to develop a simplified

indexing mechanism that can improve the efficacy of both

bag manipulation and multi-queries. A sample multi-query

could be bag.read_messages(topics, start_time,

end_time), where start_time and end_time defines a

time window for querying messages of different topics.

The two motivations drive us to develop a bag optimizer

for robotic analysis (BORA), a file system middleware that

can optimize the storage and data acquisition of ROS bags.

The key challenge of BORA is that bags were originally

designed in a log-structured way to quickly record sensor

data in chronological order. As a result, retrieving wanted

data in a bag requires scanning the entire bag to locate the

scattered messages. When the size of a bag file increases, the

cost of this inefficient data retrieval becomes proportionally

high. The poor performance of data retrieval of bags becomes

increasingly inadequate to meet the requirements of a ROS

application with some advanced data analysis needs. Another

challenge is how to minimize the modifications of the existing

ROS software stack shown in Fig. 1a while achieving the goal

of this research. The design of BORA is presented in the next

section.

Read bag metadata to retrive the
start position of connection info

Read all chunk infos at once

Get a chunk info from
chunk info list

Read corresponding
index entry

Read all connection infos at once

Create or Insert into a
hash table

Read bag metadata

BORA-Lib parse backend

BORA-Lib build hash table

Read all connection infos at once

(a) (b)

rosbag open BORA open

Any more chunk
info?

Yes

No

Fig. 4: (a) rosbag open; (b) BORA-assisted open.

III. THE DESIGN OF BORA

A. Design Goals

First of all, BORA should keep the existing bag format to

retain the advantages of quick high-volume data collecting and

data sharing. In addition, keeping the bag format also ensures

the compatibility of ROS applications. Second, BORA should

provide transparency for developers so that the upper-level

applications do not need to modify their interface codes. Third,

BORA aims at the enhancements of bag data acquisition.

As shown in Fig. 4b, BORA reduces bag open time by

eliminating the iteration existed in a traditional bag open oper-

ation shown in Fig. 4a. It utilizes a coarse-grain time indexing

technique to provide a fixed time window for the messages.

Using a simple calculation, BORA targets the messages within

certain time slots to provide a reduced number of messages

for later fine-grain looking up based on timestamps.

B. BORA Architecture

Fig. 5a illustrates the architecture of BORA. BORA sits

between the ROS framework and an underlying file system. It

supports the ordinary ROS-Lib with the help of the FUSE in-

terface to retain traditional usage of bags including replay and

computation graphs. We also developed a BORA-Lib, which

is integrated into the ROS-Lib to achieve better performance

of rebagging and complex data acquisition operations for

robotic data analysis. To provide transparency, BORA uses a

container structure so that developers can use the traditional

bag abstraction without any knowledge of BORA via a front-

end path. Real data is stored as a directory via a back-end

path on the underlying file system (see Fig. 5a). The container

contains a data organizer and a tag manger.

ROS-Lib
BORA-Lib

ROS

BORA Data Organizer

Tag Manager

Front-end

Underlying File System
(e.g., xfs, ext4, Lustre, PVFS, etc.)

Container

Back-end

(a) (b)

Virtual Layer

Container based on Underlying File System

bag1

bag1

index
topic1 topic2 metadata

...

topicN

Fig. 5: (a) BORA architecture; (b) container architecture.

Container: BORA creates a container structure on the

underlying file system for each logical bag file generated.

Inspired by the subfiling mechanism proposed by the authors

of PLFS [27], BORA splits an existing bag file into multiple

single-topic files in the container to improve performance.

Different from PLFS, which was designed for performance

improvement in checkpoint-restart use cases, BORA focuses

on offering better data query performance based on robotic

data semantics. Internally, the basic structure of a container

is a hierarchical directory tree consisting of a single top-level

directory and multiple sub-directories. BORA creates a logical

view of a single file from this container structure. Fig. 5b

demonstrates the organization of the container. After a file

called bag1 is created BORA builds a container structure on

the underlying file system. The container is comprised of a root

directory with the same name called bag1 and multiple sub-

directories to store message data. The names of sub-directories

are determined by the types of messages that are defined by

topics. For each write, BORA appends the message data to

the corresponding topic file and updates an entry in the index

file. The index entry contains the timestamp of the write, its

logical offset, its length, and a pointer to its physical location.

The metadata shown in Fig. 5b is generated internally by the

rosbag tool.

Data Organizer: Once an original bag file arrives, the data

organizer reads the metadata of the bag to locate connection

info records, and then reads all of them at once to identify the

types of messages (i.e., topics). Next, it scans and distributes

messages to distinct target sub-directories in the container

structure under the specific topic names. To de-serialize the

I/O operation, BORA uses one thread to scan the file and a

few other threads to distribute messages to the underlying file

system. The number of threads is determined by system specs.

Tag Manager: The tag manager maintains a hash table

that maps types of topics to their logical locations on the

underlying file system. The key of an entry in the table

is a topic name and the value is its back-end path. In

this way, BORA can quickly locate the path to the re-

quested topics such as /bag1/topic1 and /bag1/topic2

for rosbag command bag.read_messages (topics

=[‘topic1’, ‘topic2’]). The operations of BORA are

detailed in Section III-C. BORA does not store the hash

table but builds it whenever a bag is opened. We conducted

a group of experiments to measure the overhead of building

the hash table on-the-fly. When the number of topics is less

than 100,000 there is no significant time difference between

reading the hash table and building it on-the-fly (see Table I).

The experimental results prove that the hash table construction

TABLE I: Time and Space Costs to Construct the Hash Table

Number of Topics Hash Table Size (KB) Time Costs(ms)

10 0.11 0.163

100 1.2 0.476

1,000 13 3.949

10,000 136 29.883

100,000 1,500 35.840

time is determined by the number of topics (a.k.a the number

of sensors that a robot is equipped). One can find that the

table construction times are restrained in a range from less

than one millisecond to three dozens of millisecond as the

number of topics increases from 10 to 100,000. This time cost

is insignificant compared to the data query time (more than

dozens of seconds). Since a single robot usually is not capable

of installing one hundred thousand sensors, so we can safely

predict that the cost of on-the-fly hash table construction is

negligible.

C. BORA Operations

BORA supports two ways of rosbag I/O operations. Com-

mon operations including open, read, and write are passed

through ROS-Lib via the FUSE layer. In this section, we

discuss three advanced operations of BORA: data duplication

(copy from external storage devices), data acquisition (data

query by topics), and combined data query with topics and

start-end times. These operations are intercepted by BORA-

Lib and then manipulated by BORA Containers (see Fig. 5a).

Since all three BORA operations are performed on a bag

file that has been created by the rosbag tool, they use

bags in an offline way (see Section II-A). BORA could be

integrated into a file system running on a robot so that it

can manipulate bag data (e.g., storing a bag, extracting data

from a bag, etc.) in an online way. However, online usage of

BORA requires modifications the way of storing a bag file in

the ROS framework. This may demand the support of ROS

communities to promote framework updates with BORA.

BORA data duplication: ROS uses bags mainly to store

and share a large volume of robotic data for later analysis.

Unlike online bag writes, a bag to be duplicated has com-

plete information of a robotic application including metadata,

message data, and descriptive semantics. BORA reorganizes

data arrangement when a developer copies bags from external

portable storage devices or downloads them remotely. During

a duplication operation, BORA creates a container structure

on the back-end directory with a name same as that of the

bag. And then it creates sub-directories whose names are

determined by the names of topics, which can be identified

by reading the connection info from the metadata of the bag.

Next, it scans messages to identify the topic that the message

belongs to and then appends each message to a sub-directory

with the same name. Finally, it updates the records on the

index file. In this way, BORA re-distributes data to target sub-

directories by scanning the file once.

Fig. 6 illustrates how BORA carries out a data duplication

operation step-by-step: (1) BORA intercepts I/O requests from

ROS; (2) data organizer scans and separates data to different

topics; (3) data organizer distributes data by topics to a thread

pool; (4) task manager assigns available threads to write data

with topic to the underlying file system. Data organizer is only

involved during the first time that a bag is duplicated into a

BORA structure. For later data sharing, bags will be copied

as sub-directory trees if a target machine installs BORA.

Otherwise, they will be copied as the ordinary structures (a.k.a.

“bag is a file”) thanks to the container structure.

ROS Data Migration

BORA

Back-end: Underlying File System
/mnt

topic1 topicNmetadata ...

1

Tag Manager

bag1: Bag file

bag1

Data Organizer

topic1 queue topicN queue metadata queue

...

P1

P2 P3 Pm...Thread Pool

4

2

3

Indextopic2

bag1

Fig. 6: BORA data duplication.

BORA data acquisition:

As aforementioned, bag is originally designed to re-

play the data that is collected by robots in chronologi-

cal order. The replay operation can be viewed as a se-

quence of reads. When it comes to data acquisition for

queries, the rosbag tool needs to iterate the bag file

to build an index structure for message searching, which

takes O(N) time (see Fig. 4a). In order to respond to the

command bag.read_messages(topics=[‘topic1’,

‘topic2’]), rosbag launches a sequence of searches to

find and then pass all offsets of messages that belong to these

two topics to the underlying file system. BORA enhances

data acquisition operation in two steps. First, it eliminates

the labor of iterations when opening a bag file (see Fig. 4b).

BORA quickly parses the sub-directories of a bag on the back-

end and then builds a hash table for the tag manager. In the

hash table, the keys are topic names while the values are the

corresponding paths. Next, BORA uses ‘topic1’ and ‘topic2’ to

lookup the hash table to obtain their corresponding back-end

paths, and then, passes them to the underlying file system.

The underlying file system treats ‘topic1’ and ‘topic2’ data

as two independent files because BORA already processed

the files into large blocks of contiguous data during the data

migration step. Fig. 7 shows the detailed steps in a BORA

data acquisition operation: (1) BORA intercepts data queries

with topic names from ROS; (2) tag manager uses topic

names to find and pass their back-end paths accordingly to the

underlying file system; (3) the underlying file system returns

the requested topics to ROS. Note that multiple levels of

parallelism in a file system can be exploited to further improve

I/O performance.

ROS Data Acquisition

BORA
Data Organizer

...

Tag Manager
Tag Index

topic1..topicN 1

2

3

...

topic1 topicN

 topic1's backend pathtopic1
 topic2's backend pathtopic2

 topicN's backend pathtopicN

Back-end: Underlying File System
/mnt

topic1 topicNmetadata ...

bag1

Indextopic2

Fig. 7: BORA data acquisition.

BORA data query with start-end time: Data acquisition

is a basic bag data query operation, which only uses one

parameter (i.e., topic name) for looking-up messages. ROS

data analysis also requires advanced data queries that combine

topic names and a start-end time range when messages are

collected (i.e., finding out messages of certain topics that

are recorded from a start time to an end time). The existing

approach first searches and distills the requested topics. Next,

it performs a merge-sort of timestamps of all the messages

that belong to the distilled topics to build an index entry list,

which consists of timestamp and messages offsets. The time

complexity of this operation is O(NlogN), where N is the

number of messages. The rosbag tool then uses topic names

and start-end times to find the target messages. BORA, instead,

applies a coarse-grain time indexing technique that uses a fixed

time window to manage messages of each topic. Under each

sub-directory, there is a priority queue that stores a pair of

key-value where the key is the start time of a time window

and the value is an offset list of messages that have timestamps

within the time window.

The impact of the sort on data query with start-end time is

two-folded: 1. it further improves the data query performance

by up to 11x for single-topic queries and up to 4x for multiple-

topic queries, especially on the SSD server (see Section IV.B);

2. it provides a two-dimensional (by topics and by time) query

capability based on a file system.

Fig. 8 illustrates a sample internal data structure for time in-

dexing where the time window is set to 5 time units. For exam-

ple, a key value pair named (31, [offset list]) on the

back-end directory named /mnt/bag1/topic1/ indicates

that the [offset list] holds the offsets of all topic1 messages that

are collected within the start-end time range from 31 to 36 (see

Fig. 8). Once a pair of start-end times is provided, BORA per-

forms arithmetic calculations as ⌊start time/time window⌋
and ⌈end time/time window⌉ to figure out the start and end

time slots of the sub-directories. Note that the value of the

time window can be configured by a developer. In this way,

BORA diminishes time cost of data queries by (1) reducing

the number of messages that rosbag needs to scan to build

an index entry list via a coarse-grain time index structure; (2)

reducing the redundant labor for building an index entry list

of the distilled messages via merge-sort.

topic2

topic1

topic3

topicN

...

[31, 36) [36, 41)

...

[76, 81)

[31, 36) [36, 41) [76, 81)

[31, 36) [36, 41) [76, 81)

...

...

...

Fig. 8: The internal data structure for time indexing.

IV. BORA EVALUATION

A. Experimental Setup

Very often bag files collected by an institute are not only

for its own research but also for sharing with the entire

robotic community. Thus, they need to be copied from robots’

onboard storage devices to local servers before a further

data analysis or sharing can be performed. In this scenario,

BORA sits between the robots and local servers to reorganize

data. A local server could be a workstation, a small cluster,

or a brawnier system. In order to comprehensively evaluate

the efficacy of BORA, we integrate it into three computing

platforms with different scales: a single-node server, a four-

node PVFS cluster, and a Tianhe-1A storage subsystem. The

single-node server represents a mainstream laptop, desktop,

or server that is widely used by ROS developers. The four-

node PVFS cluster is employed to evaluate the performance of

BORA in parallelism and scalability. Finally, the Tianhe-1A

storage subsystem is utilized to evaluate the effectiveness of

BORA on a real-world computing platform for data analysis

of a robotic swarm [29].

All experiments are carried out under real-world appli-

cations that were collected by the Technical University of

Munich [26]. Generally, a ROS application generates random

access patterns due to its mixed types of sensors, different

messages acquisition intervals, and distinct message sizes.

However, BORA reorganizes a bag file according to the topics

of messages, and then, transforms random accesses into partial

sequential accesses. Table II presents the composition of a

2.9 GB Handheld SLAM bag [26]. The bag consists of seven

topics and more than 98% of its data is image data (a.k.a

unstructured data). Note that the unstructured data interleaves

with some structured data such as IMU (nertial measurement

unit), TF (transform stamped info), and Marker Arrays (ar-

bitrary primitive shapes info). This example illustrates the

importance of data acquisition optimization, especially when

unstructured data is mixed with structured data.

The four real-world applications are summarized in Table

III. There are two types of SLAM algorithms: handheld SLAM

(HS) and robot SLAM (RS). While the former only uses RGB

images and depth images, the latter employs additional data

including IMU. The dynamic object (DO) is a deep learn-

ing object detection application that requires environmental

semantics including TF, camera pose info, and marker array in

addition to RGB images. This application demonstrates a data

acquisition scenario where numerous small-size structured

data and large-size unstructured data are mixed. The pre-

analysis algorithms (PA) represent a common scenario where

multiple stages of data analysis and modeling are required.

These algorithms first pick some types of topics to build a

training model and then select a few other types for subsequent

phases of data analysis until final decisions are made. The

entire procedure involves multiple data semantic acquisitions,

multiple stages of semantic analysis of diverse algorithms, and

multi-dimensional data reconstructions. Each of these stages

may require a different set of topics, which leads to a varied

number of topic retrievals.

B. Evaluation on Bag Duplication

Although FUSE introduces some one-time overhead, we

implemented BORA with it to avoid additional API code

changes. We evaluate BORA by copying one bag from an

existing directory to a predefined BORA front-end on an SSD.

We find that in the worst case BORA-assisted Ext4 (i.e.,

BORA on Ext4) is 50% slower than Ext4 and BORA-assisted

XFS (i.e., BORA on XFS) is 90% slower than XFS (see

Fig. 9). On average, the initial capture overhead of BORA

is 26% and 51% compared to Ext4 and XFS, respectively.

We further notice that as the file size increases this overhead

of BORA becomes less significant. For example, when the

file size is larger than 3.9 GB BORA only slows down the

performance of bag write by 10% and 22% for Ext4 and

XFS, respectively. Besides, we find that if a destination path

is a BORA-supported one (i.e., ‘BORA to BORA on Ext4’ or

‘BORA to BORA on XFS’ shown in Fig. 9) BORA can copy

a bag as fast as Ext4 and XFS. This is mainly because the

data organizer of BORA is a one-time attempt to reorganize

a bag into a BORA structure.

TABLE II: Data organization of a 2.9 GB bag

Id Topic name Type description # of Messages Data size
A /camera/depth/image Depth Image 1,429 1.64 GB
B /camera/rgb/image color RGB Image 1,431 1.23 GB
C /camera/rgb/camera info RGB CameraPose Info 1,432 594 KB
D /camera/depth/camera info Depth CameraPose Info 1,430 594 KB
E /cortex marker array Primitive Shapes (MarkerArray) 14,487 8.4 MB
F /imu Inertial Measurement Unit Info (IMU) 24,367 8.4 MB
G /tf Transform Stamped Message (TF) 16,411 3.6 MB

TABLE III: Required Topics in Each Real-world Application

Application Required Topics

Handheld SLAM (HS) Depth Image, RGB Image

Robot SLAM (RS) Depth Image, RGB Image, IMU

Dynamic Object (DO)
TF, RGB Image

CameraPose, MarkerArray
Pre-analysis Algorithms(PA) Randomly Pick

DO
2.2GB

HS
3GB

RS
3.9GB

DO
15.4GB

HS
21GB

RS
27.3GB

(a)

0

10

20

30

40

50

60

70

Ti
m

e(
s)

Ext4
BORA on Ext4
BORA to BORA on Ext4

DO
2.2GB

HS
3GB

RS
3.9GB

DO
15.4GB

HS
21GB

RS
27.3GB

(b)

0

10

20

30

40

50

60

70
XFS
BORA on XFS
BORA to BORA on XFS

Fig. 9: Comparisons of write time of bags with distinct sizes.

C. Evaluation on A Single-Node Server

We evaluate BORA on a single-node server that equips with

an Intel®Xeon®CPU E5-2603 v4 @1.70GHz, 16GB DRAM,

and two 256GB NVMe SSDs. The operating system is CentOS

release 6.10 (Final). We evaluate the performance of BORA

in terms of major usage patterns including querying by topic

and querying by start-end time.

Performance of query by topic: Fig. 10 presents the time

comparisons of query by topic between two ordinary local file

systems (i.e., XFS and Ext4) with and without BORA by a

single topic from Handheld SLAM bags with different sizes.

While the y axis represents query time, the x axis shows five

topics (i.e., A, B, C, E, F shown in Table II) of Handheld

SLAM bags. Fig. 10a shows the results when the bag size is

2.9 GB. We observe that on average BORA enhances 50% of

query performance compared to the control groups. Especially,

BORA achieves a 5x faster performance when querying a topic

with a small data size (i.e., topic C in all sub-figures of Fig.

10). We further notice that BORA takes much less time to open

a bag. This is because the ordinary open consumes more time

as rogbag has to traverse the entire bag to generate index

data during an open operation. The time consumed by open

becomes significant when ROS only reads a small portion of

data. On the contrary, this time is negligible in BORA as it

only loads tag index, which is a small hash table. Comparing

Fig. 10a with the rest three sub-figures, one can see that BORA

consistently improves performance when the size of a bag

increases from 2.9 GB to 20.3 GB.

Fig. 11 and Fig. 12 present query time comparisons of

the four real-world applications between two underlying file

systems (i.e., XFS and Ext4) with and without BORA with

small and large bags. We observe that compared to the control

groups on average BORA enhances the query performance by

more than 70% and 50% for the 2.9 GB case and 21 GB

case, respectively. Fig. 11 and Fig. 12 demonstrate that BORA

can substantially improve query performance for all four real-

world applications across all cases.

Performance of query by start-end time and topic: In

this group of experiments, we evaluate BORA in terms of

advanced data queries by start-end times as well as topics.

Fig. 13 and Fig. 14 compare the query times under different

time intervals. We fix the start time and choose an end time

by adding a stair-step time interval (i.e., 5 seconds in our

experiments). We can see that BORA outperforms the control

groups by up to 11x in single-topic queries (see Fig. 13) and

3.5x in multiple-topic queries (see Fig. 14). This is mainly

because BORA reduces the search range. When the end time

keeps increasing and covers the entire bag file, BORA can still

achieve around a 2x performance improvement. In particular,

we find that BORA gains 11x performance improvement when

querying camera info data (see Fig. 13d). This is because the

rosbag tool spends unavoidable efforts on building an index

structure of the complete data set for time query even the

requested data is very small. BORA can reduce indexing and

searching time by providing a smaller range of data via a

coarse-grained time index.

D. Evaluation on A Small Cluster

This group of experiments is conducted on a 4-node all-SSD

PVFS cluster, which is interconnected with 10 Gbit/s Ethernet.

Each node is equipped with one Intel®Xeon®CPU E5-2603

v4 @1.70GHz, 16 GB DRAM, and two 256 GB NVMe SSDs,

which are organized as a soft RAID-0 array.

Fig. 15 presents the data query time comparisons between

PVFS with and without BORA. Fig. 15a and Fig. 15b provide

query times with a single topic from Handheld SLAM. We

can see that BORA achieves up to 2x speedup compared

to the ordinary PVFS mainly due to its negligible open

time. Furthermore, we observe that BORA gains 30x speedup

for querying some specific structured data such as /camer-

a/rgb/camera info. This large performance improvement is

attributed to BORA’s extremely low-time cost of opening a

bag file. Fig. 15c and Fig. 15d show query times of four

real-world applications. We observe that BORA gains 2x

speedup on average compared to the ordinary PVFS, which

demonstrates good scalability of BORA. In addition, Fig. 16

A B C E F
(a)

0

1

2

3

Ti
m

e(
s)

Bag size: 2.9GB

BORA+Ext4(read)
BORA+Ext4(open)

BORA+XFS(read)
BORA+XFS(open)

Ext4(read)
Ext4(open)

XFS(read)
XFS(open)

A B C E F
(b)

0
1
2
3
4
5
6
7
8
9

Ti
m

e(
s)

Bag size: 8.7GB

A B C E F
(c)

0
2
4
6
8

10
12
14

Ti
m

e(
s)

Bag size: 14.5GB

A B C E F
(d)

0
3
6
9

12
15
18
21

Ti
m

e(
s)

Bag size: 20.3GB

Fig. 10: Comparisons of query time by topics of Handheld SLAM on a single-node server with varied bag size.

(a)
0
1
2
3
4
5
6

Ti
m

e(
s)

Bag size: 2.9GB, app: HS

(b)
0

2

4

6

8

10

Ti
m

e(
s)

Bag size: 3.9GB, app: RS

(c)
0

1

2

3

4

Ti
m

e(
s)

Bag size: 2.2GB, app: DO

(d)
0

1

2

3

4

5

Ti
m

e(
s)

Bag size: 3GB, app: PA

Fig. 11: Comparisons of query time by topics of real-world applications with small bags on a single-node server:

(a) Handheld SLAM; (b) Robot SLAM; (c) Dynamic Object; (d) Pre-analysis Algorithms.

(a)
0
4
8

12
16
20
24
28
32

Ti
m

e(
s)

Bag size: 21GB, app: HS

(b)
0
6

12
18
24
30
36
42
48

Ti
m

e(
s)

Bag size: 27.3GB, app: RS

(c)
0
3
6
9

12
15
18
21

Ti
m

e(
s)

Bag size: 15.4GB, app: DO

(d)
0
4
8

12
16
20
24
28
32

Ti
m

e(
s)

Bag size: 21GB, app: PA

Fig. 12: Comparisons of query time by topics of real-world applications with large bags on a single-node server:

(a) Handheld SLAM; (b) Robot SLAM; (c) Dynamic Object; (d) Pre-analysis Algorithms.

10 20 30 40
Time interval (s)

(a)

0

5

10

15

20

Re
ad

 t
im

e
(s

)

Bag size: 21GB, topic: Depth Image

10 20 30 40
Time interval (s)

(b)

5

10

15

20

Re
ad

 t
im

e
(s

)

Bag size: 21GB, topic: Marker Array

BORA+Ext4 BORA+XFS Ext4 XFS

10 20 30 40
Time interval (s)

(c)

5

10

15

Re
ad

 t
im

e
(s

)

Bag size: 21GB, topic: IMU

10 20 30 40
Time interval (s)

(d)

0

2

4

6

8

Re
ad

 t
im

e
(s

)

Bag size: 21GB, topic: Depth Camera Info

Fig. 13: Comparisons of query time by one topic and start-end time of Handheld SLAM 21 GB bag on a single-node server.

10 20 30
Time interval (s)

(a)

10

20

Re
ad

 t
im

e
(s

)

Bag size:21GB, app: HS

10 20 30
Time interval (s)

(b)

10

20

30

Re
ad

 t
im

e
(s

)

Bag size:27.3GB, app: RS

10 20 30
Time interval (s)

(c)

5

10

15

20

Re
ad

 t
im

e
(s

)

Bag size:15.4GB, app: DO

10 20 30
Time interval (s)

(d)

10

20

30

Re
ad

 t
im

e
(s

)

Bag size:21GB, app: PA

Fig. 14: Comparisons of query time by topics and start-end time of real-world applications on a single-node server:

(a) Handheld SLAM; (b) Robot SLAM; (c) Dynamic Object; (d) Pre-analysis Algorithms.

A B C D E F G
(a)

0
5

10
15
20
25
30
35
40
45

Ti
m

e(
s)

Bag size: 21GB

BORA+PVFS(read) BORA+PVFS(open) PVFS(read) PVFS(open)

A B C D E F G
(b)

0
10
20
30
40
50
60
70
80
90

Ti
m

e(
s)

Bag size: 42GB

HS RS DO PA
(c)

0
8

16
24
32
40
48
56
64
72

Ti
m

e(
s)

Bag size: 21GB

HS RS DO PA
(d)

0
20
40
60
80

100
120
140

Ti
m

e(
s)

Bag size: 42GB

Fig. 15: Comparisons of query time by topics on a PVFS cluster: (a), (b) Handheld SLAM; (c), (d) real-world applications.

10 20 30 40
Time interval (s)

(a)

0

10

20

30

40

Re
ad

 t
im

e
(s

)

Bag size: 42GB, topic: Depth Image

10 20 30 40
Time interval (s)

(b)

0

10

20

30
Re

ad
 t

im
e

(s
)

Bag size: 42GB, topic: Marker Array

BORA+PVFS PVFS

10 20 30 40
Time interval (s)

(c)

0

10

20

30

Re
ad

 t
im

e
(s

)

Bag size: 42GB, topic: IMU

10 20 30 40
Time interval (s)

(d)

0

10

20

Re
ad

 t
im

e
(s

)

Bag size: 42GB, topic: Depth Camera Info

Fig. 16: Comparisons of query time by one topic and start-end time of Handheld SLAM with 42 GB bag on a PVFS cluster.

provides query performance with topics and start-end times.

BORA outperforms the control group in every testing case,

which proves the effectiveness of the proposed coarse-grain

time indexing technique. One can see that the evaluation

results on the PVFS cluster are not as good as that of on

the single-node server. This is mainly due to the performance

bottleneck of the network (10 Gbit/s Ethernet) and limited

user-level parallelism.

E. Evaluation on A Tianhe-1A Storage Subsystem

In this sub-section, we evaluate BORA on a Tianhe-1A

storage subsystem that is capable of performing data analysis

of a robotic swarm [30]. A Lustre parallel file system is

running on top of the storage subsystem, which consists of

twelve compute nodes, three object storage servers (OSS),

and four meta data servers (MDS). All of them are con-

nected by Mellanox®Inifiband switch MT27500 ConnectX-

3 (56 Gpbs). Each compute node is equipped with two

Intel®Xeon®CPUs Gold 6134@3.2GHz and 384 GB DRAM.

Each OSS server has two Intel®Xeon®CPUs E5-2660 v3

@2.6GHz and 128 GB DRAM. Each MDS server consists

of two Intel®Xeon®CPUs E5-2650 v2 @2.6GHz and 64 GB

DRAM. The total storage capacity of the cluster is 804 TB.

Data analysis of a robotic swarm normally requires multiple

processes to query the same topic from multiple bags simul-

taneously. In this scenario, a developer is retrieving messages

of the same topic type (e.g., RGB Image in Table II) from

multiple bags, which are collected by a large number of robots

in a swarm from the same relative position concurrently. By

doing so, the developer can build an object that has a multi-

angle view (e.g., Bullet Time®effect in the movie The Matrix).

We configure the number of robots in a swarm to be 10, 50,

and 100 to represent a small swarm, a middle-sized swarm, and

a large swarm, respectively. The total number of bags in each

swarm is equal to its number of robots. The storage subsystem

can support up to 192 concurrent processes. In order to avoid

contention, we launch up to 100 processes to open bags with

one process dedicated for a particular bag. In this group of

experiments, two bag sizes are employed: 21 GB and 42 GB.

The processes launched open all the bags at the same time

and then run the Robot SLAM application to extract data of

various types including Depth Image, RGB Image, and IMU.

Fig. 17 shows that the BORA-assisted Lustre outperforms

the control group in all cases. More importantly, it exhibits

better scalability as Fig. 17b demonstrates more than 10x

overall performance improvement when totally 4.2 TB data

(i.e., 100 bags with each having 42 GB data) is processed. The

read performance gains of BORA stem from its capability of

aggregating data of same topics, which provides a sequential

access pattern to underlying HDDs. The significant time cost

improvement (i.e., up to 3,113x in opening 100 bags with each

having 42 GB data) comes from open operation, which is

achieved by BORA’s light-weight open procedure. Recall that

BORA only loads a small hash table of tag index information

instead of traversing the entire bag file. The substantial per-

formance improvement in open shows that BORA can fully

exhibit its potential when the number of bags and data volume

of each bag increase. As shown in Fig. 18, BORA’s coarse-

grain time indexing mechanism reduces time costs by up to

4x for queries by topics and a time range.

V. DISCUSSIONS

In this section, we summarize three lessons that we learned

from this research.

An efficient data indexing mechanism is critical to the

performance of robotic analysis: Data indexing plays a key

role in achieving an efficient ROS data analysis, especially

when the amount of data is large. To obtain a good perfor-

mance in write, ROS spreads index information throughout

a bag file. However, this index layout makes data analyzing,

10 50 100
Number of bags

 (a)

0
300
600
900

1200
1500
1800
2100
2400
2700

Ti
m

e(
s)

Bag size: 21GB

BORA+Lustre(read)
BORA+Lustre(open)

Lustre(read)
Lustre(open)

10 50 100
Number of bags

 (b)

0
800

1600
2400
3200
4000
4800
5600
6400
7200

Ti
m

e(
s)

Bag size: 42GB

Fig. 17: Comparisons of query time of a robotic swarm on a

Tianhe-1A storage subsystem: (a) 21 GB each bag; (b) 42

GB each bag.

10 20 30 40 50
Time interval (s)

(a)

0

200

400

600

Re
ad

 t
im

e
(s

)

Number of bags: 10
BORA+Lustre(21GB) Lustre(21GB) BORA+Lustre(42GB) Lustre(42GB)

10 20 30 40 50
Time interval (s)

(b)

0

500

1000

1500

2000

Re
ad

 t
im

e
(s

)

Number of bags: 50

10 20 30 40 50
Time interval (s)

(c)

0

1000

2000

3000

Re
ad

 t
im

e
(s

)
Number of bags: 100

Fig. 18: Comparisons of query time by topics and start-end

times of a robotic swarm on a Tianhe-1A storage subsystem.

collecting, and aggregating time-consuming. Furthermore, we

observe that most data is written only once but will be read

multiple times the latter. Therefore, it is essential to extract

index information to a specific location, which can be quickly

retrieved later. BORA can greatly boost the performance of

data acquisition mainly because it employs an efficient data

indexing mechanism.

Redundant data retrieval should be avoided as much

as possible: In the robotic analysis, it is common to retrieve

a complete collection of a dataset with multi-dimensional

variables to the memory and then manipulate it. As multi-

dimensional data collection becomes more complicated a data

cleaning operation requires more temporal memory space to

store some intermediate values, which leads to a longer data

processing time. Therefore, a technique that can dynamically

provide an appropriate amount of data to avoid redundant

data retrieval is much needed. BORA can judiciously retrieve

only desired data from a complete dataset so that redundant

data retrieval is avoided, which also contributes to its high

performance in data acquisition.

The potential of SSDs cannot fully exhibit without a data

organization optimization in ROS software layers: Modern

storage devices like SSDs can offer much higher performance

than that of HDDs. However, we found that simply replacing

HDDs with SSDs cannot achieve a high data acquisition

performance in ROS applications. The reason is that when

high-bandwidth SSDs are employed software latency becomes

a dominant factor that determines the performance of data

processing. Thus, optimizing ROS data organization in various

software layers becomes a must.

VI. RELATED WORK

To the best of our knowledge, this research is the first study

that focuses on optimizing data organization of ROS bags for

robotic analysis. Therefore, little closely related work is found

in the literature. In this section, we first briefly summarize

some widely used I/O middleware systems. Next, we introduce

prior investigations in DMBS for ROS applications.
Although several adaptive I/O middleware systems

[31] [28] [27] [32] have been developed to improve the I/O

efficiency for various applications, none of them can work

with the ROS framework. HDF5 is a data model containing

complex data objects and metadata [31]. Its file format is

incompatible with that of bag. ADIOS [28] provides a high-

level I/O API to perform aggressive data relocation within the

checkpoint, but it requires application modifications. Unlike

ADIOS, PLFS [27] uses a user-level file system interface to

gain performance benefits without modifying any application.

ROMIO [32] is an MPI-IO implementation, which delivers

high performance I/O in the presence of noncontiguous

requests. It requires high-level libraries like MPICH and

significant code modification if it is employed in the ROS

framework. Like PLFS, BORA requires no code modification

in any file system or application. PLFS [27] might be the

most similar in philosophy to BORA, particularly in that

both employing a container structure to provide a transparent

data management layer. Table IV summarizes the differences

between these middleware systems.

TABLE IV: I/O Middleware System Comparison

Interposition Usage App. Modification

HDF5 Library Scientific Data No

ADIOS Library Checkpoint-restart No

PLFS FUSE or Library Checkpoint-restart Yes

ROMIO Library MPI-IO No

BORA FUSE or Library Bag Enhancement Yes

A handful of database systems had been developed to fa-

cilitate robotic analysis from various angles. While MongoDB

was developed to store and manage document data provided

by a set of domestic mobile robot sensors for a smart-home

environment [33], a NoSQL graph database named Neo4J

was proposed to store and query long-term human-robotic

interaction data for high data availability [34]. Aerospike

is an in-memory NoSQL database system [23]. It faces a

challenge in striking a balance among capacity, performance,

and data persistence. Unlike [33] [34] that targeted a single-

robot analysis platform, Cassandra was developed to store a

large amount of robotic data for the progressive assignment

algorithm for a multi-agent system [35]. Along the same line,

PostgreSQL was built on a cloud platform to manage a range

of robotic control data from six-axis robots to improve control

precision with intelligent functions [24]. InfluxDB [25] and

BtrDB [36] were designed to optimize the performance of data

retrieval from a time series database. Unfortunately, they do

not support complex array structures, and thus, are inadequate

to process rich ROS data. Even though these DBMS systems

were proposed to make robotic data analysis easier in some

specific scenarios, they lost the advantages of existing ROS

bag mechanisms (i.e., portability and generality) as none of

them kept robotic use cases in mind.

VII. CONCLUSIONS

Software development for robots is often more challenging

than other types of software development. One reason is that

algorithm testing can be time-consuming and error-prone. ROS

separates low-level hardware control and high-level decision

making into separate programs. It also provides a simple

way to record and playback sensor data and other types of

messages. By recording a robot’s sensor data, a developer can

replay it many times to test various algorithms on that data.

ROS is a de facto robotic software development platform as

it received extensive support from the robotics community.

More than just replaying messages, some emerging robotic

applications [8] [9] now require the capabilities of advanced

message acquisition and rich queries. How to retain the ad-

vantages of the existing ROS bag mechanism while enhancing

message extracting and querying becomes a new challenge. To

solve it, we develop a prototype of a file system middleware

called BORA, which is then integrated into three computing

platforms. Further, we evaluate BORA in terms of data queries

using four real-world ROS applications. Our experimental

results demonstrate that BORA can significantly improve

data query performance. Besides, it meets the data analysis

requirements of robot swarms.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

tremendous feedback and comments, which have substantially

improved the content and presentation of this paper. We are

thankful to Laurent Kneip and Sören Schwertfeger from the

ShanghaiTech Automation and Robotics Center (STAR) for

their invaluable feedback on this work. We are also indebted

to Yong Dong from the State Key Lab of High-Performance

Computing, China to assist us to run tests on the Tianhe-1A

supercomputer system. Shu is deeply thankful to Hong Jiang

and Adam Manzanares for their contiguous encouragement.

Shu Yin’s research is supported by the China Postdoctoral

Science Foundation under Grant 2015M572708, and Shang-

haiTech University under a start-up grant. Tao Xie’s work is

partially supported by the US National Science Foundation

under grant CNS-1813485.

REFERENCES

[1] I. Afanasyev, A. Sagitov, and E. Magid, “Ros-based slam for a gazebo-
simulated mobile robot in image-based 3d model of indoor environ-
ment,” in International Conference on Advanced Concepts for Intelligent

Vision Systems. Springer, 2015, pp. 273–283.
[2] A. Maldonado, U. Klank, and M. Beetz, “Robotic grasping of unmodeled

objects using time-of-flight range data and finger torque information,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE, 2010, pp. 2586–2591.
[3] S. Zaman, W. Slany, and G. Steinbauer, “Ros-based mapping, localiza-

tion and autonomous navigation using a pioneer 3-dx robot and their
relevant issues,” in 2011 Saudi International Electronics, Communica-

tions and Photonics Conference (SIECPC). IEEE, 2011, pp. 1–5.

[4] Y. Hua, S. Zander, M. Bordignon, and B. Hein, “From automationml
to ros: A model-driven approach for software engineering of industrial
robotics using ontological reasoning,” in 2016 IEEE 21st International

Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2016, pp. 1–8.

[5] Y. Yu, X. Wang, Z. Zhong, and Y. Zhang, “Ros-based uav control using
hand gesture recognition,” in 2017 29th Chinese Control And Decision

Conference (CCDC). IEEE, 2017, pp. 6795–6799.
[6] C. Hu, C. Hu, D. He, and Q. Gu, “A new ros-based hybrid architecture

for heterogeneous multi-robot systems,” in The 27th Chinese Control

and Decision Conference (2015 CCDC). IEEE, 2015, pp. 4721–4726.
[7] ROS, https://wiki.ros.org, 2019.
[8] J. A. Caley, N. R. Lawrance, and G. A. Hollinger, “Deep learning of

structured environments for robot search,” Autonomous Robots, vol. 43,
no. 7, pp. 1695–1714, 2019.

[9] T. Pire, T. Fischer, J. Civera, P. De Cristóforis, and J. J. Berlles, “Stereo
parallel tracking and mapping for robot localization,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 1373–1378.

[10] T. Niemueller, G. Lakemeyer, and S. S. Srinivasa, “A generic robot
database and its application in fault analysis and performance evalua-
tion,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Oct 2012, pp. 364–369.
[11] R. Ravichandran, E. Prassler, N. Huebel, and S. Blumenthal, “A

workbench for quantitative comparison of databases in multi-robot
applications,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Oct 2018, pp. 3744–3750.
[12] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor data

storage performance: Sql or nosql, physical or virtual,” in 2012 IEEE

Fifth International Conference on Cloud Computing, June 2012, pp.
431–438.

[13] Y. Koo and S. Kim, “Distributed logging system for ros-based systems,”
in 2019 IEEE International Conference on Big Data and Smart Com-

puting (BigComp), Feb 2019, pp. 1–3.
[14] K.-M. Kim, C.-J. Nan, J.-W. Ha, Y.-J. Heo, and B.-T. Zhang, “Pororobot:

A deep learning robot that plays video q&a games,” in 2015 AAAI Fall

Symposium Series, 2015.
[15] W. Chen, T. Qu, Y. Zhou, K. Weng, G. Wang, and G. Fu, “Door recog-

nition and deep learning algorithm for visual based robot navigation,”
in 2014 IEEE International Conference on Robotics and Biomimetics

(ROBIO 2014). IEEE, 2014, pp. 1793–1798.
[16] D. Ribeiro, A. Mateus, P. Miraldo, and J. C. Nascimento, “A real-time

deep learning pedestrian detector for robot navigation,” in 2017 IEEE

international conference on autonomous robot systems and competitions

(ICARSC). IEEE, 2017, pp. 165–171.
[17] F.-Y. Wang, P. J. Lever, and B. Pu, “A robotic vision system for object

identification and manipulation using synergetic pattern recognition,”
Robotics and computer-integrated manufacturing, vol. 10, no. 6, pp.
445–459, 1993.

[18] Z. Erickson, S. Chernova, and C. C. Kemp, “Semi-supervised haptic
material recognition for robots using generative adversarial networks,”
arXiv preprint arXiv:1707.02796, 2017.

[19] W. Lawson, E. Bekele, and K. Sullivan, “Finding anomalies with
generative adversarial networks for a patrolbot,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2017, pp. 12–13.
[20] Y. Xia and J. Wang, “A dual neural network for kinematic control of

redundant robot manipulators,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 31, no. 1, pp. 147–154, 2001.
[21] T. Niemueller, G. Lakemeyer, and S. S. Srinivasa, “A generic robot

database and its application in fault analysis and performance evalua-
tion,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, 2012, pp. 364–369.
[22] A. J. Fiannaca and J. Huang, “Benchmarking of relational and nosql

databases to determine constraints for querying robot execution logs,”
Computer Science & Engineering, University of Washington, USA, pp.
1–8, 2015.

[23] V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju, A. Gooding,
R. Iyer, A. Shinde, and T. Lopatic, “Aerospike: Architecture
of a real-time operational dbms,” Proc. VLDB Endow., vol. 9,
no. 13, p. 1389–1400, Sep. 2016. [Online]. Available: https:
//doi.org/10.14778/3007263.3007276

[24] W. Chang, S. Lin, J. Hsu, and B. Hsu, “Automatic path planning of robot
for intelligent manufacturing based on network remoted controlling and

simulation,” in 2019 4th Asia-Pacific Conference on Intelligent Robot

Systems (ACIRS), July 2019, pp. 164–168.
[25] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases

and influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.
[26] T. U. of Munich, https://vision.in.tum.de/data/datasets/rgbd-dataset,

2019.
[27] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,

M. Polte, and M. Wingate, “Plfs: a checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, 2009, pp. 1–12.
[28] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,

“Flexible io and integration for scientific codes through the
adaptable io system (adios),” in Proceedings of the 6th International

Workshop on Challenges of Large Applications in Distributed

Environments, ser. CLADE ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 15–24. [Online]. Available:
https://doi.org/10.1145/1383529.1383533

[29] S. Kornienko, O. Kornienko, and P. Levi, “Generation of desired
emergent behavior in swarm of micro-robots,” in Proceedings of the 16th

European Conference on Artificial Intelligence, ser. ECAI’04. NLD:
IOS Press, 2004, p. 239–243.

[30] M. Patil, T. Abukhalil, S. Patel, and T. Sobh, “Ub robot swarm: Design,
implementation, and power management,” in 12th IEEE International

Conference on Control and Automation (ICCA), June 2016, pp. 577–
582.

[31] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” 03 2011,
pp. 36–47.

[32] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings - Frontiers 1999, 7th Symposium on the

Frontiers of Massively Parallel Computation, United States, Jan. 1999,
7th Symposium on the Frontiers of Massively Parallel Computation,
Frontiers 1999 ; Conference date: 21-02-1999 Through 25-02-1999.

[33] N. Bellotto, M. Fernández Carmona, and S. Cosar, “ENRICHME
integration of ambient intelligence and robotics for AAL,” in Wellbeing

AI: From Machine Learning to Subjectivity Oriented Computing (AAAI

2017 Spring Symposium), March 2017.
[34] N. Koster, S. Wrede, and P. Cimiano, “A model driven approach for

eased knowledge storage and retrieval in interactive hri systems,” in 2018

Second IEEE International Conference on Robotic Computing (IRC), Jan
2018, pp. 113–120.

[35] C. McCord, J. P. Queralta, T. N. Gia, and T. Westerlund, “Distributed
progressive formation control for multi-agent systems: 2d and 3d deploy-
ment of uavs in ros/gazebo with rotors,” in 2019 European Conference

on Mobile Robots (ECMR), Sep. 2019, pp. 1–6.
[36] M. P. Andersen and D. E. Culler, “Btrdb: Optimizing storage system

design for timeseries processing,” in 14th USENIX Conference on File

and Storage Technologies (FAST 16). Santa Clara, CA: USENIX
Association, Feb. 2016, pp. 39–52. [Online]. Available: https://www.
usenix.org/conference/fast16/technical-sessions/presentation/andersen

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
0.1 Abstract
This description contains the information needed to launch all
experiments of SC20 paper "BORA: A Bag Optimizer for Robotic
Analysis". More precisely, we explain how to compile and run BORA
used in our evaluation part. The source code of BORA is temporarily
unavailable to the public because we are filing a PCT (Patent Coop-
eration Treaty, an international patent law treaty) patent (the patent
number can be provided if it does not violate the anonymous role)
for this project. The patent application already passed the Interna-
tional Search phase and is currently in the International Publication
phase. Once it passes the International Publication phase, we will
immediately disclose the BORA source code to the public.

0.2 Description
• Program: C/C++, Python 3.7.6 and FUSE 2.9.4
• Run-time state: The system is idle and only running our tests
• Output: Sensor messages queried by the user
• Experiment workflow: Clone project, compile and install
BORA. Install ROS framework. Specify the front-end and
back-end storage directories, mount BORA to the front-end
directory, then save the bag file to the front-end, and finally
use ROS-Lib to operate.

• Publicly available?: The source code will be published as
soon as possible once the patent application is accepted.

0.2.1 Hardware dependencies. BORA has been tested on a variety
of x86 machines.

0.3 Installation
(1) First you must clone BORA code to the local machine: The

code will be published to github, after the source code is
made public.

(2) Get into BORA directory and compile it.
$ cd BORA && mkdir build
$ cd build && cmake ..
$ make -j4
$ sudo make install

0.4 Experiment workflow
(1) Create a config file under $HOME/.borarc, the format is as

follows.
- mount_point: /mnt/bora

backends:
- location: posix:///home/foo/ssd

(2) Mount BORA
$./bin/bora /mnt/bora

(3) Then we can put bag file to the mount point and use ROS
library to use it. The method of use is the same as the ROS
official document.

0.5 Evaluation and expected result
The expected results include sensor messages (GPS, IMU, Image
etc.)

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: All author-created hardware arti-
facts are maintained in a public repository under an OSI-approved
license.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/SC20-bora/bora

(DOI: 10.5281/zenodo.3957776)↪→

Artifact name: The preliminary link to BORA source
code. The code will be disclosed once our PCT
patent passes the International Search phase.

↪→

↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: We run Author-Kit (see
https://github.com/SC-Tech-Program/Author-Kit) to gather
the hardware environment information. First of all, We evaluate
BORA on a single-node server that equips with an Intel Xeon CPU
E5-2603 v4 @1.70GHz, 16GB DRAM, and two 256GB NVMe SSDs.
We then run BORA on a 4-node all-SSD PVFS cluster, which is
interconnected with 10 Gbit/s Ethernet. Each node is equipped
with one Intel Xeon CPU E5-2603 v4 @1.70GHz, 16GB DRAM, and
two 256GB NVMe SSDs, which are organized as a soft RAID-0
array. At last, we evaluate BORA on a production cluster. The
production cluster is running on top of a Lustre parallel file system
which consists of 12 compute nodes, three object storage servers
(OSS), and four metadata servers (MDS), which are connected
by Mellanox Inifiband switch MT27500 ConnectX-3 (56Gpbs).
Each compute node is equipped with two Intel Xeon CPUs Gold
6134@3.2GHz and 384GB DRAM. Each OSS server has two
Intel®Xeon CPUs E5-2660 v3 @2.6GHz and 128GB DRAM. Each
MDS server consists of two Intel Xeon CPUs E5-2650 v2 @2.6GHz
and 64GB DRAM. The total storage capacity of the cluster is 804TB.

Operating systems and versions: CentOS 6.10 Final

Compilers and versions: CMake 3.13 and gcc 7.4.0

Zhang, et al.

Applications and versions: Real world robotic applications pre-
sented by Technical University of Munich

Libraries and versions: ROS Library, FUSE 2.9.4 or above

Key algorithms: The paper describes in detail how BORA orga-
nizes the bag file and how to build an index for quick query

Input datasets and versions: All experiments are carried out un-
der real-world applications that were collected by the Technical
University of Munich. (https://vision.in.tum.de/data/datasets/rgbd-
dataset)

