
For Peer Review

User-level Parallel File System: Case Studies and
Performance Optimizations

Journal: Concurrency and Computation: Practice and Experience

Manuscript ID CPE-21-0475.R3

Editor Selection: Regular Issue Submission

Wiley - Manuscript type: Research Article

Date Submitted by the
Author: 21-Dec-2021

Complete List of Authors: Zou, Yanliang; ShanghaiTech University, School of Information Science
and Technology; Shanghai Institute of Microsystem and Information
Technology; University of the Chinese Academy of Sciences
Chen, Chen; ShanghaiTech University
Deng, Tongliang; ShanghaiTech University
Zhang, Jian; ShanghaiTech University
Xiaomin, Zhu; National University of Defense Technology
Chen, Si; West Chester University of Pennsylvania
Yin, Shu; ShanghaiTech University

Keywords: User-level File Systems, Parallel File System, FUSE, I/O performance,
Storage System, Data Consistency

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF.
 You must view these files (e.g. movies) online.

User-level Parallel File System_ Case Studies and PerformanceOptimizations .zip

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

User-level Parallel File System: Case Studies and Performance
Optimizations

Yanliang Zou1,2,3 | Chen Chen1 | Tongliang Deng1 | Jian Zhang1 | Xiaomin Zhu4 | Si Chen5 | Shu
Yin*1

1ShanghaiTech University, Shanghai, China
2Shanghai Institute of Microsystem and
Information Technology, Chinese Academy
of Sciences, Shanghai, China

3University of Chinese Academy of
Sciences, Shanghai, China

4State Key Laboratory of High Performance
Computing, Changsha, China

5West Chester University of
Pennsylvania(West Chester), PA, United
States

Correspondence
*Shu Yin. Email:
yinshu@shanghaitech.edu.cn
Present Address
393 Middle Huaxia Road, Pudong,
Shanghai, China, 201210

Summary

User-level file systems are usually adopted to bridge the gap between efficacy and
efficiency of file system developments for new applications’ I/O demands. And the
widely known user-space file system framework, FUSE, is commonly utilized to
deployed user-level file systems. This paper first uses a popular stack-able file sys-
tem as a case study to exam how FUSE affects I/O performance. Based on the testing
and analytical results, this paper then presents SHC, an implementation method to
implement a user-level file system without FUSE intervention. Experimental results
indicate that SHC improves write bandwidth by up to 5.6x compared with that of
FUSE and present leading superiority on read cases.
KEYWORDS:
User-level File Systems, Parallel File System, FUSE, I/O performance, Storage System, Data Consistency

1 INTRODUCTION

Parallel and distributed file systems provide a single-node massive storage abstraction and distribute files in a striped manner.
Existing parallel file system such as Lustre1, GPFS2 and OrangeFS3, are widely used in high performance computing (HPC)
and other concurrent scenarios. Besides, some lightweight parallel file systems are designed and developed to serve specific
functions, for example, Parallel Log-structured File System (a.k.a. PLFS)4 can improve the I/O performance under the N-1
access pattern. These lightweight file systems are implemented in user space laying on an existing file system to offer data
service, which can greatly reduce the difficulty of development.

Unlike those implemented in kernel-space, these user-level file systems can not benefit from the unified POSIX interface
which is the most widely used I/O interface in applications. Thus, they always seek help from some file system frameworks like
FUSE (a.k.a. Filesystems in User-space)5. FUSE is a popular user-level file system framework that allows users to deploy file
systems without modifying kernels. It receives requests from applications via the FUSE kernel module and forwards them to a
corresponding user-space handler. Therefore, every I/O operation leads to several kernel crossings. The performance with FUSE
would be affected considering the further delays from queuing time and request reorganizing time in the FUSE layer6. Vangoor
et al. studied performance characteristics of an ext4 file system on FUSE and demonstrated that FUSE results in inconsistent
workload-dependent slowdowns7.

We conducted a preliminary fs_test 8 benchmark test on a 4-node Lustre cluster with and without PLFS, a user-level file
system that is designed to accelerate N–1 writes by transforming random, dispersed N–1 writes into sequential N–N writes in a
log-structured manner. The Lustre cluster is equipped with 1 MDS and 4 OSSes that are interconnected by Mellanox®Inifiband
switch MT27500 ConnectX-3 (56 Gpbs). Each OSS server has two Intel®Xeon®CPUs E5-2650 v2 @2.6GHz and 64 GB

Page 1 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2 AUTHOR ONE ET AL

DRAM. The total capacity of the cluster is 71 TB. We use fs_test to create 16 processes and write various sizes of data into
a single file concurrently. We found that PLFS-assisted Lustre provides a much better I/O bandwidth (up to 3x) when the data
size is larger than 64MB (see Fig. 1). Fig. 1 also reveals the limits of PLFS in handling smaller-sized data mainly due to the
overhead of multiple kernel crossings by the FUSE layer. We study the impact of FUSE in detail in Section 3.

(a) Comparision by file sizes

(transfer size=128KB)

4 16 64 256 1024

File size(MB)

0

200

400

600

W
ri
te

 B
a
n
d
w

id
th

(M
B

/s
)

(b) Comparision by file sizes

(transfer size=128KB)

4 16 64 256 1024

File size(MB)

0

1000

2000

3000

R
e
a
d
 B

a
n
d
w

id
th

(M
B

/s
) PLFS on Lustre Lustre

FIGURE 1 A performance comparison with and without a user-level file system

In addition, following the recent discovery and patching of Meltdown9, a currently Intel-specific security issue, kernel pro-
grammers were forced to isolate kernel and user memory space more thoroughly, exacerbating kernel crossing penalties due to
page walking and TLB flushes. Given that existing large-scale computing systems can not replace flawed processors immedi-
ately, it is inevitable that workloads highly dependent on system calls will suffer slowdowns. It would be highly unsatisfactory
if the performance overhead resulting from utilizing FUSE takes a significant proportion of the total I/O processing time within
applications running on large-scale computing systems.

Data consistency has to be maintained as the underlying file system goes parallel or distributed. MPI-IO technique can handle
the data consistency issue well, but it requires additional efforts to change APIs from standard POSIX. Switching APIs to MPI-
IO may become a challenge for domain scientists who do not have rich experience in API code modifications. They are inclined
to standard POSIX API to focus on the functionalities of their codes. Besides, domain scientists may not take advantage of MPI-
IO as it requires execution parameter tuning for different computing system setups. Without technique support from experienced
I/O teams, it would be hard for domain scientists to benefit from MPI-IO. It motivates us to design a mechanism that could be
serving as an expedient that takes advantage of MPI-IO while retaining the POSIX interface. Users like domain scientists then
do not bother to spend efforts on code modifications to switch to MPI-IO while taking benefits of parallelism.

In this paper, we first conduct a case study10 to examine the effects of FUSE on the performance of user-level file systems. Then
we implement a preliminary solution for "PLFS without FUSE" using a dynamic library. We further notice that dynamic library
approaches can not guarantee data consistency especially when newly generated data is appended to a file concurrently. Append-
ing data is a common I/O operation in modern parallel and distributed storage systems that can be maintained with advanced
interfaces like MPI. Recall that our dynamic library approach intercepts and redirects requests from users to the underlying file
systems by overriding general system call under POSIX. If we can separate the processing of metadata and data, consistency can
be ensured without introducing additional overheads. We update an approach and name it SHC11– Synchronization Processing
Server (SPS), Hooking Library (HLib) and Customed IOStore (CStore).

SPS is to deal with the write synchronization issue when multiple devices are writing to a single file concurrently, and it
retains data consistency without introducing additional memory copy and data buffers. SPS also maintains the file handles and
offsets so that every device knows where to write its data in the file.

HLib is a library that captures I/O requests, distills metadata operations, and dispatches them to SPS to locate data offsets.
Upon the returns from SPS, HLib forwards the data offsets to CStore to proceed with data writing and reading.

CStore is a modified interconnect module that sits between user-level file systems and underlying file systems. CStore delivers
data read and write operations to the underlying file system through interfaces like POSIX or parallel file system APIs. CStore
is linked to SPS and coordinates data operations with HLib.

Page 2 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 3

The proposed SHC aims at 1) reducing FUSE intervenes for user-level parallel file systems while avoiding additional code
modifications to applications, 2) maintaining the data consistency for scenarios where multiple processes write to a single file
without communicating with each other, and 3) providing parallel I/O accesses in user-level file systems under POSIX standard.
The major contribution of this paper is three-folded:

• We use a stackable user-level parallel file system (a.k.a (sPFS)) named PLFS as a case study to examine how FUSE affects
I/O performance;

• We propose SHC, an implementation method for sPFS that reduces FUSE overhead. SHC is designed to avoid FUSE
intervention and maintain data consistency for scenarios where multiple processes write to a single file asynchronously;

• We implement an SHC prototype and integrate it with PLFS into a real-world cluster;
• A comprehensive experimental study is provided to evaluate the efficacy of SHC.

The rest of the paper is organized as follows: Section 2 addresses our motivation and background information of FUSE and
PLFS. Section 3, 4 describes the design and principles of our proof of concept FUSE-bypass mechanisms for PLFS. Section 5
presents the experiment setup and results, shows the analysis of technical factors which affect the performance in detail. Section
6 discusses the potential use cases and possible drawbacks of FUSE. Section 7 presents an overview of related works. Section
8 concludes the paper with a summary of the broad issues.

2 BACKGROUND AND MOTIVATION

2.1 Background
User-level File System Framework

In modern operating systems, most file systems reside in the operating system kernel as its operations require raw access
to storage or network devices using a higher privilege level. However, the user may wish to place an interposition layer for
virtual file manipulation. These file systems do not store data; they manipulate files and reorganize them for the underlying
storage systems, and we call them stackable file systems. These virtual file systems provide a simple file abstraction for many
applications and are fairly easy to implement without having to write kernel modules or drivers.

libfuse

glibcglibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

FIGURE 2 FUSE operation routine

Filesystem in User-space (FUSE) is a common interface found on many UNIX systems that allow users to implement file
systems running in user space without modifying the kernel. FUSE bridges the user space file system and user applications for

Page 3 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4 AUTHOR ONE ET AL

normal I/O operations. Fig. 212 shows the operation principles of FUSE. FUSE consists of two parts, the kernel module and user-
level daemon (the instance of a FUSE file system). They communicate via a virtual device /dev/fuse. When an I/O operation
is invoked on a FUSE-based virtual file system, the request passes through the kernel virtual file system (VFS). The kernel then
passes the request to the FUSE kernel module, which processes the request and redirects it to a user-level FUSE daemon. The
daemon performs operations on the underlying file systems and redirects the result back to the user application via the kernel,
which may trigger system calls again.

While the file system is running in user space, developers and users do not need to struggle with the kernel since FUSE will
handle all this stuff. User-space file systems like sshfs13, GlusterFS14 and CRFS15 that operate over FUSE highly extend the
use case of file systems. This is a major contribution to FUSE. But this method also introduces more kernel crossings, more
memory copies, and a higher possibility that the I/O request would be serialized.

Attempts have been made to optimize FUSE processing speeds16, but studies show that the performance of FUSE-mounted
native file systems is highly inconsistent even with optimization7, ranging from marginally higher than native file systems to
vast slowdowns. These performance characteristics indicate FUSE does have its pros and cons.

Parallel Log-structured File System
Massively parallel applications running across thousands of processors requires robust error protection mechanisms and fail-

ure recovery systems due to the high failure rates that supercomputers and data centers experience. Checkpointing is one such
technique that periodically saves data to persistent storage, so that, when failures occur and the system is reset, the applica-
tion can continue from the last checkpoint. For most applications, writing into a single file is the most convenient method of
storing a program state. However, these writings tend to be small and unaligned with file system boundaries, resulting in poor
performance.

The Parallel Log-structured File System (PLFS)4 attempts to solve this problem by inserting an interposition layer in the
storage stack to rearrange storage patterns from the user application to patterns to achieve better performance with parallel storage
devices. The original N-1 write pattern can be reorganized into an N-N pattern, improving checkpoint bandwidths significantly.

2.2 Motivation
FUSE is to assist applications to utilize user-level file systems without introducing new customized APIs. Any customized API
other than standard POSIX would introduce additional efforts on code modification, which are very unfriendly to application
developers. It is also infeasible to modify scientific applications’ code to work with a new API. On the operating system level,
I/Os are mostly completed by POSIX APIs since POSIX is a standard interface. Even though in the HPC cluster, POSIX is
used as the unified interfaces of the parallel and distributed file systems and MPI-IO lays between HPC applications and POSIX
interfaces as a middleware. MPI-IO is a well-known parallel programming model to assist scientific applications for better
parallel I/O performance, but it requires applications to manage cache coherency themselves. That’s why many HPC machines
use MPI or POSIX with MPI-IO for data consistency. For example, the TaihuLight Supercomputer machine stacks MPI-IO on
top of a distributed file system called LWFS17 via the POSIX interface.

Besides, many HPC machines employ customized MPI libraries for their dedicated architectures. It is getting harder for
developers to modify and recompile a customized MPI library for their applications. For example, the TaihuLight supercomputer
uses a tailored MPI version called SunwayMPI, which contains tuned functions for the Sunway architecture and may not be
fully compatible with the open-sourced MPI. Without proper modification of the MPI library, the patches prepared for the
open-sourced MPI library may not work correctly on a customized MPI. Without an experienced code optimization team, using
POSIX API could be an efficacy approach for regular users.

File systems implemented in kernel-space can enjoy the convenience of POSIX which is supported by Linux kernel natively.
User-level file systems, however, commonly depend on frameworks like FUSE to offer POSIX services and register themselves
on VFS. Vangoor et al. did explore the performance characteristics of a local ext4 file system on FUSE in their research7.
Nevertheless, more and more CPU vulnerabilities have been found by computer security researchers. For example, Meltdown
is a well-known CPU bug discovered by several security researchers9 affecting Intel CPUs that implement speculative and out-
of-order execution models, basically meaning from Intel Pentium Pro processors to current models. To fix these vulnerabilities
without replacing the affected hardware, we can only use a software-level patch. This method may cause performance issues.
The current solution for Meltdown on Linux systems is the Kernel Page Table Isolation (KPTI) mechanism, which unmaps
kernel memory mappings from the user application page table, leaving minimal kernel data exposed in attacks. We have tested
the performance loss of KPTI over PLFS via FUSE on a local ext4 file system using ior 18, a file system I/O benchmark tool. As

Page 4 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 5

is indicated in Fig. 3, the preliminary results show that these patches introduce significant slowdowns for PLFS with FUSE. The
performance loss in the worst case could reach 20% in our tests. This result indicates that FUSE suffers from higher kernel/user
memory isolation on the operating system level. Though this is a simple experiment, we believe that the more strict privilege
level protection may call for more consideration on the performance issue of FUSE, especially on heavy parallel I/O workloads.

1K 2K 4K 16K 128K

Transfer Size (Byte)

0

20

40

60

80

100

120

B
an

d
w
id
th

(M
B
/s
)

Write Bandwidth of PLFS with FUSE

KPTI On

KPTI Off

1K 2K 4K 16K 128K

Transfer Size (Byte)

0

200

400

600

800

B
an

d
w
id
th

(M
B
/s
)

Read Bandwidth of PLFS with FUSE

KPTI On

KPTI Off

FIGURE 3 Performance of PLFS via FUSE over KPTI status

3 LIBPLFS: A CASE STUDY OF FUSE

To discover how FUSE affects the performance of a storage system, we choose PLFS as our case study because it is a popular
efficient parallel file system. PLFS is optimized for parallel I/Os, so we could use PLFS to evaluate the performance of FUSE
under highly parallel workloads regardless of the parallel bottleneck introduced by the actual file system behind FUSE. What’s
more, PLFS does not have an official kernel module that could make it able to be mounted as a kernel file system, which means
we can implement a solution for “PLFS without FUSE”. The development process enriched our knowledge on FUSE and those
underlying I/O operations of an operating system, which helps our further discussion on the performance issue of FUSE under
parallel workloads.

Wright et al. previously implemented a library called LDPLFS19, which could be used to improve the I/O performance of
PLFS without modifications to the application. It uses dynamic linking to inject system calls and then reorganize the I/O routines.
LDPLFS does not offer a mechanism to handle consistency problems which is unnecessary in HPC centers because of tools
like MPI-IO. It depends on the current application process and does not serve communication between other processes. In other
words, PLFS with LDPLFS is strongly coupled with MPI-IO and it can not independently serve as a file system, which greatly
limits the deployment of PLFS and other user-level file systems with a similar dynamic library.

But inspired by the idea of dynamic linking I/O redirect mechanism, we implemented a pre-loaded dynamic library, libplfs,
which is the predecessor of HLib(see Section 4.1.2). With this library that exempts FUSE from PLFS, we could evaluate the
performance overhead of FUSE. And with our own diagnostic code within the library, we could analyze the performance details
of PLFS.

3.1 Main Scheme
The fundamental idea of our implementation is to use a dynamic library to redirect the I/O routines of PLFS, then take critical jobs
that could be done in user-space back to the user-space. The avoided overhead of kernel crossings and VFS I/O reorganization
could introduce more capability to highly concurrent I/Os. Our key ideas could be summarized into two parts.

Page 5 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6 AUTHOR ONE ET AL

Dynamic linking: Dynamic linking allows the program to link to an external library at runtime, allowing us to redirect the I/O
routines of a user application efficiently. The LD_PRELOAD environment variable defines the very first loaded dynamic library.
A user-customized dynamic library could have the highest priority in dynamic linking, even higher than standard libraries (like
glibc in Linux), such that all the I/O function calls could be redirected to a user-customized function. This method gives user
programs a great convenience to reorganize their I/O routine.

User Space API Utilization: Kernel crossings introduce more overhead, so we want to migrate things back to the user-space.
For example, a big write request will first come into the memory space of FUSE, then be reorganized by FUSE and sent back to
the user space PLFS daemon. The extra memory copies are excessive and not necessary. What’s more, the file status of a process
is usually maintained by the operating system kernel when the file system that these files are present is in the kernel space. In
PLFS, the file status is maintained by the FUSE kernel module if it is mounted via FUSE. We want to take things back to user-
space, eliminating those operations which are unnecessary to be done in the kernel. File systems implemented via FUSE usually
have a set of user-space APIs since their user-space daemon will utilize its functionality in user-space. Utilizing user-space APIs
of such a file system could take its job back to the user-space, which may eliminate the overhead introduced by FUSE.

3.2 Methodology
PLFS provides a series of user-level APIs that allow direct access to PLFS functions. Without the assistance of the FUSE layer,
developers have to port POSIX I/O APIs to PLFS-specific ones and recompile the code before the execution. This approach
requires expertise and labor in code modification and usually is not viable for high-performance platforms. Thus, we implement
a file mapping table in user space memory to maintain the file status.

FIGURE 4 Process Flow of libplfs

We build the library from scratch with the help of the PLFS API. The basic idea of libplfs is to translate a standard C or
POSIX I/O function call to a PLFS API function call and maintain the file status table in the application’s memory space. Fig. 4
visualized the general I/O routine of libplfs.

Take open() as an example, libplfs opens a temporary virtual file on the local file system in advance, then a corresponding
file descriptor will be allocated (e.g. in Fig. 4, a file is opened with fd=3 at the end). libplfs then calls plfs_open() to get a

Page 6 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 7

PLFS file descriptor (e.g. plfs_file*=0x0123abcd in Fig. 4) and save the mapping relationship between the virtual file (fd) and
the PLFS file (plfs_file*). Since PLFS is transparent to the applications, applications can only be aware of the virtual file (fd)
while the actual data will be stored in the PLFS file. When an application tries to read or write to a file (fd), according to the
mapping, our library will instead invoke the read or write function for the PLFS file(plfs_file*), then set the virtual file’s (fd) offset
accordingly. When closing a file, we close the virtual file descriptor (fd) and free all related memory, including the file descriptor
mapping table entry and, if necessary, the C FILE structure. For concurrent I/Os, for example, opening a file multiple times by
different threads, our PLFS file structure will record the reference number and utilize PLFS’s design on multiple operations on
the same file. This won’t cause too much memory usage.

Before every I/O operation, our library will sanitize the file-specific parameter that is transferred in, as we need to differentiate
between the normal I/O calls and calls to PLFS. If we determine it is a PLFS operation, the library will execute the procedure
for PLFS. Otherwise it will call dlsym() to determine the address of the true open() function in libc, jump to that and process
the non-PLFS operation.

Libplfs overrides the most commonly used standard C library I/O functions, allowing it to handle common situations. The
user would simply have to specify the LD_PRELOAD environment variable when executing the desired program, pointing it to the
pre-compiled libplfs dynamic library. Afterward, PLFS could be utilized directly by calling POSIX I/O functions or standard
library I/O functions, exempting FUSE. This methodology can be extended to most of the executable user space applications
which dynamically link libc at runtime. This dynamic library could even be deployed system-wide because it can handle both
PLFS and non-PLFS I/Os.

In the perspective of design, libplfs could avoid excessive kernel crossings and kernel function calls introduced by the FUSE
I/O mechanism. However, there are potential drawbacks of libplfs. A huge difference between FUSE and libplfs is the privilege
level. FUSE resides in the kernel, so in kernel’s view, it is a kernel file system, which means it can utilize kernel page cache
while libplfs in user-space cannot.

3.3 Performance Evaluation of FUSE
We set up and configure our experimental cluster for performance evaluations. The cluster consists of five nodes - one master
node and four HDD storage nodes. The node specification table is shown in Table 1.

TABLE 1 Cluster node specification
Node Master Node (1x) Storage Node (4x)
CPU Intel(R) Xeon(R)

E5-2603 v4 @ 1.70GHz
Intel(R) Xeon(R)

E5-2603 v4 @ 1.70GHz
Memory 16GB DDR4 2400MHz 16GB DDR4 2400MHz
Storage 2 * 1TB HDD,

1 for storing config files
4 * 1TB HDD,

3 for Ceph storage pool
OS Linux Mint Sonya with

4.8.0-53-generic kernel
Linux Mint Sonya with
4.8.0-53-generic kernel

PLFS is a stackable parallel file system, as it does not store files, but instead rearranges files for the underlying file systems.
We chose CephFS20 to be PLFS’s back-end file system due to its reliability and efficiency on massive concurrent I/Os. The
four storage nodes constitute a Ceph object storage cluster. With one node being chosen to be the meta-data server, the storage
cluster serves as a remote file system. We mount this file system via the Ceph kernel module on the master node and specify the
mounting point as PLFS’s back-end file system.

We first mount PLFS(v2.5) via FUSE with default settings and test the performance as a control group. When testing the per-
formance of libplfs, we specify the LD_PRELOAD environment variable to the compiled libplfs dynamic library before executing
the benchmark via mpirun. With the help of libplfs, all the I/O routines are redirected without being intervened by the FUSE,
and the results of the testing tool are the performance information of PLFS with libplfs. Lastly, we mount PLFS via FUSE with
kernel page cache disabled, to see how kernel page cache would affect FUSE’s performance.

Page 7 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8 AUTHOR ONE ET AL

So there are three different experiment conditions: FUSE with cache, FUSE with direct I/O (no cache), and no-FUSE (FUSE
bypassed via libplfs). The backend Ceph file system is always mounted via the Ceph kernel module with cache enabled, this is
for a better simulation on real-world systems, as they often utilize cache mechanism greatly.

The benchmark tool we are using in the paper is fs_test 8, which is an open-source I/O pattern emulation benchmark application
developed at LANL. This benchmark can be used to emulate a real application I/O pattern. It supports the MPI/IO, POSIX, and
PLFS API I/O interfaces. The concurrent I/O follows the N-1 model. The type of I/O workload won’t be a potential bottleneck
since PLFS is designed to transfer the N-1 workload to the N-N workload. Every read experiment is right after the corresponding
write experiment to make the backend file system warm-up before doing a reading test. This is to better utilize backend cache,
which avoids a potential backend file system bottleneck. After each writing test, the file system will do a synchronization, to
flush the memory, and for parallel file systems usually, build the indices.

In the aforementioned sections, we addressed a difference between FUSE and libplfs that the latter does not equip with a
kernel-level cache while the former makes use of the cache to take advantage of prefetching on reads or buffering on writes.
libplfs does not implement the cache mechanism because of the limited access permissions in the user-space. Although the I/O
performance may suffer from the lack of caches, libplfs is beneficial by reducing the number of kernel crossings and memory
copies, which are major overheads to I/O accesses. Our experiment results show how the factors affect the performance of
parallel file systems in userspace.

We choose some representative results which are categorized as follows:
• Small file I/O (128MB) and big file I/O (2GB)
• Serial I/O (1 thread) and concurrent I/O (4 threads)
• Read and write test provided by the benchmark tool
• Small transfer sizes (1KB, 4KB, 16KB) and relatively bigger transfer sizes (64KB, 256KB, 1MB)

The argument we choose on the x-axis is the transfer size because: 1) the transfer size has a strong relationship to cache
utilization, 2) it will also determine the system call counts and kernel function call counts under the same file size. We ran every
single test five times and use error bars to indicate the errors and variance of the results.

Fig. 5 shows the read benchmark results. The read performance of no-FUSE outperforms FUSE with direct I/O regardless
of transfer size. Furthermore, FUSE with cache performs better than no-FUSE and FUSE with direct I/O in tests with small
transfer sizes (smaller than 32KB). When the transfer size gets bigger (larger than 32KB), libplfs outperforms FUSE with cache
while FUSE with cache seems to reach its plateau, but FUSE with cache is always better than FUSE with direct I/O on the read
performance tests. In addition, FUSE with direct I/O and no-FUSE have the same trend with the changing transfer size while
FUSE with cache performs more stable. But the results of single thread read and multiple threads read are similar.

Fig. 6 shows the write benchmark results. The write performance of FUSE direct I/O outperforms FUSE with cache regardless
of transfer size. And the performance of no-FUSE is generally better than the two FUSE-based I/O methods when the transfer
size is small (smaller than 64KB). When the transfer size is getting bigger, no-FUSE is outperformed by FUSE direct I/O, but
it is still better than FUSE with the cache. When the transfer size is small, the performance gap between FUSE and no-FUSE
is more obvious in the multi-threaded test than in the single-threaded test. That is, no-FUSE gains better performance when
concurrent small writes occur.

Some results shown in the previous part are expected. We expected that no-FUSE will outperform FUSE all the way except
reading with a small transfer size due to the page cache utilization, but some results are not as expected. A potential problem
here is “double caching”. The kernel recognizes FUSE and the underlying file system as two different file systems, so they have
separate cache space in the kernel. When CephFS in our test has a clean buffer, doing the reading test will cause the file content
to be cached for two copies. Secondly, the cost of system calls should be considered. Especially on the condition that the actual
I/O time cost is not high, the overhead introduced by privilege level switching is more apparent.

4 SHC: A FUSE PERFORMANCE OPTIMIZATION APPROACH

However, the dynamic link approach(libplfs), is insufficient to be a solution to bypass FUSE for a user-level parallel file system.
Concurrency on a file can not be handled since libplfs is attached to different independent processes each of which maintains

Page 8 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 9

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

500

1000

1500

2000

2500

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of single thread read on small file (128MB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

500

1000

1500

2000

2500

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of four threads read on small file (128MB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

500

1000

1500

2000

2500

3000

3500

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of single thread read on big file (2GB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

500

1000

1500

2000

2500

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of four threads read on big file (2GB)

no-FUSE FUSE direct I/O FUSE with cache

FIGURE 5 Read performance comparison

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

20

40

60

80

100

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of single thread write on small file (128MB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

5

10

15

20

25

30

35

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of four threads write on small file (128MB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

20

40

60

80

100

120

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of single thread write on big file (2GB)

1K 4K 16K 64K 256K 1M

Transfer Size (Byte)

0

5

10

15

20

25

30

35

40

B
an

d
w
id
th

(M
B
/s
)

Bandwidth of four threads write on big file (2GB)

no-FUSE FUSE direct I/O FUSE with cache

FIGURE 6 Write performance comparison

Page 9 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10 AUTHOR ONE ET AL

a copy of file metadata such as offset and file size in its individual memory. In general, a dynamic library is a self-supporting
library and it can not be a complete method in user-space because no communication among the working processes to ensure
consistency. This problem comes acute when multiple processes simultaneously append data to the same file. Appending data is
a common writing behavior in the POSIX environment by setting an O_APPEND flag when opening a file. With this flag, before
each writing operation, the kernel will adjust the file offset to the end for the coming write. Therefore, the user-level file systems
need other mechanisms to arrange this field in user-space. A self-supporting dynamic library can not handle this case since the
application processes can not communicate with each other for instant file size.

In this section, we extend libplfs to an advanced approach—-the proposed SHC idea. SHC mainly aims at mounting user-
level parallel file systems without FUSE intervention. In addition to the FUSE detour, SHC provides a write synchronization
alternative for scenarios where independent users are trying to write to the same file.

App

Storage

HLib

Server

CStore

sPFS librarysPFS library

Socket

Server Node Client Node

metadata data

FIGURE 7 Structure of SHC and the colored boxes respectively standing for SPS, HLib and CStore.

4.1 SHC Architecture
SHC consists of three major components: (1) Synchronization Processing Server (SPS), (2) Hooking Library (HLib), and (3)
Customized IOStore (CStore)(shown in Fig. 7).

4.1.1 SPS: Synchronization Processing Server
SPS is an independent process to maintain opened files for applications and ensure metadata consistency for them. As shown in
Fig. 8, SPS is composed of the main thread, a thread pool, and several resource managers mainly including queues, maps, and
vectors. The main thread is in charge of the listen socket function, serves as the only entrance for connect() and send()
requests from clients, and responses the accept() and receive() operations. Upon receiving a write() request, the main
thread creates a task and pushes the task into the tail of the task manager–a queue for the thread pool. Working threads in the
thread pool stay being blocked if the task manager is empty. As the thread pool can only pop one task from the queue at a time,
working threads have to compete for a task from the pool. We use two locks to maintain the mutual exclusions amongst threads.
In addition, the locking design should satisfy the following demands since operations of a “queue” are not atomic operations:

1. The idle working threads should keep waiting when the main thread is pushing tasks;
2. The push operation should have higher priority than the pop;
3. All the idle working threads should be blocked when the task queue becomes empty.
The sPFS fd manager is a key-value table to maintain all the in-used sPFS files for client applications. It holds the working

status and global file descriptor for an sPFS file. Each time an open request arrives, a new fd will be created and inserted into

Page 10 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 11

Main thread

Working thread 1 Working thread
2

Working thread
N

...

Thread Pool

Server

TaskN Task(N-1) ... Task3 Task2 Task1

Tail

Task Manager

Head

Socket
(communicate
with HLib)

push task pop task

Socket

(accept() or
receive
request)

client fd manager

sPFS fd manager

FIGURE 8 Structure of SPS. The rounded rectangles represent threads

the manager, unless a fd to that file has already existed. The existence of an fd indicates that an sPFS file is opened and is ready
for writing data.

The client socket fd manager describes all the connected client processes. An instance of the client socket fd manager is
comprised of a socket fd and a flag that indicates whether a working thread is processing a task that is sent from a client process.
We stipulate that the messages from an active client should be received only by the assigned working thread in the server.

4.1.2 HLib: Hooking Library
The Hooking Library (HLib) is a dynamic library linked to applications, which is based on the idea of libplfs. The HLib keeps
the design of fundamental functionality that intercepts POSIX operations19 and redirects them to another field. But differently,
HLib will separate the processing of metadata and data by delivering operation commands to SPS with an empty data buffer but
locally executing real I/O itself.

For writing requests, SPS will globally update the metadata for the target sPFS file and send HLib back a real I/O address
referring to the backend of the sPFS. And for reading requests, the server will flush dirty metadata to underlying storage and
reply an acknowledgment to HLib. Thus, HLib can pay no attention to the metadata consistency and only focus on executing
real I/O operations. More details will be introduced in Section 4.2.

4.1.3 CStore: Customized IOStore
IOStore identifies the module in PLFS that invokes the underlying file system interfaces(e.g., POSIX and PVFS) for actual data
processing. I/O operations in PLFS will be finally delivered to the underlying file system through IOStores. For example, the
POSIX IOStore will invoke POSIX interfaces to execute back-end I/O operations. And more generally, we adopt “IOStore”
referring to an sPFS’s module that interconnects the underlying file systems with the sPFS and executes real I/O operations.

CStore is a customed IOStore, which works in the server process and supports diverse underlying storage systems. When SPS
tries to write data to the underlying file system, it is used to invoke an IOStore object with parameters including a real PLFS
back-end address and a data buffer. As we mentioned in 4.1.2, the data buffer contains nothing but the socket fd describing where
the front-end operations come from.

Instead of triggering actual data writing, CStore contacts the client process with that socket fd and transfer the back-end
address to it for real I/O operation. In other words, when the server tries to execute a back-end writing operation, CStore will
secretly cancel the writing action and “leakage” the real I/O address to the client with a socket fd hiding in the fake data
buffer. More generally, CStore identifies the idea that modifying the IOStore of an sPFS to replace back-end writing with an
address delivering to a client. During this procedure, a fake data buffer containing a socket fd supplies the information for the
communication between the two.

Page 11 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12 AUTHOR ONE ET AL

4.2 Data Stream
SHC contains an independent server process indicating that the data stream has inter-process communications(IPC). We choose
sockets as the IPC technique among different nodes to assist SHC with the communications between the server process and
application ones.

4.2.1 Writes
The write synchronization issue in parallel file systems is the most important and complicated part of SHC. SHC handles write
synchronizations by separating data writes and index write streams into different processes. Fig.9 demonstrates the complete
write stream of SHC including communications and data streams:

First of all, HLib hooks a writing request which is originally sent to the kernel from an application. Then HLib rearranges
the writing procedure if the target file path falls into one of sPFS mount points. HLib generates a socket for a file with the pid
of the corresponding active process as its name. After connecting to the server socket, a message containing parameters of the
write request such as data count, physical target path but an empty data buffer, is sent to the server process.

Server

sPFS Library

App

HLib sPFS Library

Storage

(1)Request

(2) Address(3) Reply (4) write (5)datametadata(async)

FIGURE 9 The procedure of writing a sPFS file

On the server side, the main thread accepts a connecting application from a client and receives a request. The received request
is pushed into the task manager together with the client socket fd right away. A working thread then picks this task from the
queue and parses a buffer for the task’s parameters. The working thread calls sPFS’s write() after verifying a writing flag
included in parameters. In particular, the respective client socket fd is delivered to sPFS’s writing function instead of a practical
data buffer. Invoked by the writing function, the customized IOStore(a.k.a. CStore) obtain the socket fd and sends an address to
the client with the fd. On the client-side, HLib writes data to the address that is provided by the server. This mechanism isolates
the metadata and data operations.

SPS maintains a lazy mechanism to manage metadata for higher efficiency so that metadata will be pushed to underlying
storage devices periodically rather than being flushed immediately when writes are issued. The writing isolation between data
and metadata prevents writing requests from simply waiting in a queue for completely processing. And the design will introduce
much fewer overheads than to simply line up the requests.

4.2.2 Reads
The read operation is simpler than writes in SHC. Fig. 10 presents the data flow of communication and read data streams. The
procedure of reading a sPFS file is similar to a common linking library in some way.

At first, HLib hooks a read request from an application and exams its path. HLib then connects and notifies the server process
to flush the related metadata from memory to disks to keep the modified information updated on persistent storage. The server
process will check the existence of a fd for such file in the sPFS manager and flush the metadata if a fd exists. Otherwise, the
server process does not perform any flush operation. Notice that this interaction only occurs once during the whole reading
action in spite of the number of read() is called. After receiving the reply from the server process, HLib invokes sPFS reading

Page 12 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 13

(3) Ack

App

HLib sPFS Library

Server

sPFS Library

Storage

(1) Notice

(2) flush metadata
(4) read

(5) data

FIGURE 10 The procedure of reading a sPFS file

function for the target data. The main role of HLib is to maintain a mapping between a logical sPFS file and a tmp file which is
held by an application.

4.3 Security
Although we realize our conjecture of SHC, the proposed SHC implementation still steps far away from an effective alternative
to FUSE. We propose some preliminary moves that we tried to push SHC one step closer to its security goal. We design a
mechanism to manage connections between the server and client sockets under a limited connection quantity of server sockets.
The mechanism is designed based on the following investigations:

• Keeping a client connected to the server all along is not efficient even in concurrent I/O circumstances.
• After opening a file, it must stay open in SPS to accept the successive write(read) operations until close() is invoked.
• Not all developers remember to invoke close() under heavy I/O workloads.

We design a mechanism on the server-side to manage numbers of client connections with an occupancy count for each client
fd. An individual timestamp is set for each active client in the client socket fd manager when an action like receiving occurs.
Every time the main thread updates the fd set before receiving a connection, the thread checks the inactive clients’ timestamps
and evacuates the client with the oldest timestamp to make room for other ones. In addition, those connected clients that have
been idled long enough to trigger a threshold will be closed as well. As a client is disconnected, the related sPFS file that has a
fd object in the PLS file manager will be closed.

Another design consideration lies in: after obtaining a request, the main thread does not parse the received buffer, while the
working thread that chooses a task does have to parse the buffer. In this case, the main thread handles the connections and
requests in a concurrent I/O circumstance in a more efficient way.

5 SHC EVALUATION

5.1 Experimental Configurations
Hardware: We deploy our SHC-PLFS on a Sunway TaihuLight HPC testbed cluster to test the I/O concurrency and up-
scalability. Each node is equipped with two 2.6GHz 8-core 16-thread Intel Xeon CPU and 64GB RAM, running CentOS v7.5.
The cluster is built on a Lustre file system with 1 MDS and 4 OSSes interconnecting with InfiniBand. Lustre’s storage targets
consist of 12 HDDs which are arranged as two groups of RAID6 by a Sugon DS800-F20 storage system providing 71TB HDD
storage capacity.

Software: We implement PLFS (v2.5) with FUSE (v2.9.7) (denote as FUSE-PLFS), and compare the performance with
SHC-PLFS obtained by fs_test benchmark8. We use fs_test to generate a scenario where a lot of data is modified concurrently
to reflect the overhead of open/sync/close operations. We use Open-MPI (v3.1.0) to manage multiple processes in our tests.

Page 13 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14 AUTHOR ONE ET AL

Workloads: We use fs_test to evaluate the performance of SHC-PLFS system and FUSE-PLFS system. For each system, we
try to explore its writing or reading capacities under different conditions and then compare them with each other. We set several
workloads covering three important factors including the number of writing/reading threads, file size, and transfer size (see
Table 2). Similar to the case study in Section 3.3, we warm up the page cache before running read tests and flush the memory
after every write test.

TABLE 2 Summary of workloads
type write, read

threads# 4,8,16
file size(MB) 4,16,64,256,1024

transfer size(KB) 32,64,128,256,1024

In addition to the ordinary Lustre, we compare the proposed SHC with three FUSE setups: default FUSE (denote as FUSE-
PLFS default), FUSE with 128KB buffer (denote as FUSE-PLFS w/128K buf), and FUSE with direct I/O (denote as FUSE-PLFS
w/ DirectIO). FUSE-PLFS default serves as the control group that FUSE buffer size is 4KB by default; FUSE-PLFS w/128K
buf sets the buffer size to 128KB so that data smaller than 128KB can be transferred only once in FUSE kernel; FUSE-PLFS
w/ DirectIO shares the same setup that is discussed in Section 3.3 to reveal the impact of page caches.

5.2 Benchmark Evaluation and Analysis
5.2.1 I/O Bandwidth
Fig. 11 shows the fs_test results of writing and reading bandwidth under different conditions which are file size, transfer size
and number of processes. In Fig. 11, SHC-PLFS shows outstanding performance compared with the FUSE-PLFS system.

Transfer sizes: Transfer size is one of the most important factors of the performance. For a fixed amount of data, a smaller
transfer size means a larger number of I/O operations(nobj). Since SHC has to maintain communications between applications
and SPS through sockets for each I/O operation, the smaller the transfer size is, the larger proportion the extra overheads caused
by sockets will take in the whole performance. In this section, we present comparisons of bandwidth between SHC-PLFS and
FUSE-PLFS with changes in transfer sizes. Fig. 11(a) shows sharply increasing write bandwidth of SHC with the growth of
transfer size. Differently, the read bandwidth of SHC stays stably on a leading level because of the page cache and the readahead
mechanism of Linux.

We notice that SHC-PLFS presents a great superiority compared with FUSE-PLFS. One of the main reasons is that FUSE-
PLFS produces more than one memory copy, while SHC does not introduce extra data copy between kernel and user-space.
Besides, additional context switches and complex mechanisms limit the behaviors of FUSE-PLFS cases.

In the read case, FUSE-PLFS presents stable performance for the same reason as SHC-PLFS. In particular, FUSE-PLFS using
direct IO gives up the page cache for efficient write performance which results in poor reading behavior with small transfer sizes.
But it catches up with SHC-PLFS when facing large transfer sizes probably because of the local cache on Lustre’s OSS(Object
Storage Server). Lustre, the underlying file system we use in this evaluation, arranges data cache on its OSSs to avoid frequently
accessing OSTs(Object Storage Target).

Lustre performs a stable level of bandwidth around the tests as it is not really good at handling the N-1 pattern. Internally,
Lustre stripes a file into a specific number of objects each of which will be stored on an OST. Although Lustre can handle data
accessing in parallel by striping, data writing on the same file object still triggers lock competitions. Differently, PLFS changes
N-1 into N-N I/O pattern and processes do not need to compete for the same object on an OST.

File sizes: In Fig.11(b)(e), the competitors show increasing trend with ascending file sizes except Lustre. We choose 64KB
as the transfer size in this test since large sizes show the great disparity between FUSE-PLFS and SHC-PLFS while small sizes
show the inferiority of FUSE-PLFS using direct I/O in Fig.11(a)(b). In write cases, FUSE-PLFS using direct I/O shows better
performance than the other two FUSE cases, as it directly maps the application’s data to FUSE daemon without copying data
to FUSE’s cache in the kernel. Both SHC-PLFS and FUSE-PLFS using direct I/O keep bandwidth increasing with the growth
of file sizes. Because the latency of handling file metadata and interconnection within Lustre such as lock competition will take
less proportion in the whole test. In read cases, FUSE-PLFS with direct I/O surpasses the other two FUSE-PLFS cases when

Page 14 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 15

(a) Comparision by transfer sizes

(file size=256MB, 16 processes)

32 64 128 256 1024

Transfer size(KB)

0

1000

2000

3000

W
ri
te

 B
a
n
d
w

id
th

(M
B

/s
)

(b) Comparision by file sizes

(transfer size=64KB, 16 processes)

4 16 64 256 1024

File size(MB)

0

200

400

600

W
ri
te

 B
a
n
d
w

id
th

(M
B

/s
)

(c) Comparision by process #

(file size=256MB, transfer size=64KB)

4 8 16

Number of processes

0

200

400

600

W
ri
te

 B
a
n
d
w

id
th

(M
B

/s
)

(d) Comparision by transfer sizes

(file size=256MB, 16 processes)

32 64 128 256 1024

Transfer size(KB)

0

1000

2000

3000

4000

R
e
a
d
 B

a
n
d
w

id
th

(M
B

/s
)

(e) Comparision by file sizes

(transfer size=64KB, 16 processes)

4 16 64 256 1024

File size(MB)

0

1000

2000

3000

4000

R
e
a
d
 B

a
n
d
w

id
th

(M
B

/s
)

(f) Comparision by process #

(file size=256MB, transfer size=64KB)

4 8 16

Number of processes

0

1000

2000

3000

4000

R
e
a
d
 B

a
n
d
w

id
th

(M
B

/s
)

Lustre FUSE-PLFS default on Lustre FUSE-PLFS w/ 128K buf on Lustre FUSE-PLFS w/ DirectIO on Lustre SHC-PLFS on Lustre

FIGURE 11 Comparisons on writing(a-c) and reading(d-f) bandwidth. (a) and (d) show the bandwidth with different transfer
sizes when 16 processes concurrently read/write a 256MB file. (b) and (e) present the increasing trend of SHC with the growth
of file sizes under 16 processes. And (c) and (f) gives the effect of different numbers of processes.

reading large files although they can benefit from the reading cache in FUSE. Nevertheless, SHC-PLFS leads the performance
since it benefits from both the reading cache and less data copying.

Processes Quantity: Fig. 11(c) and (f) show the comparison among the five competitors under different numbers of processes.
In write cases, FUSE-PLFS w/ DirectIO and SHC-PLFS both present outstanding performance while the other two FUSE cases
are still burdened with memory copy in the FUSE kernel. But in reading cases, although memory copy affects both FUSE-PLFS
default and FUSE-PLFS w/128K buf, page cache and readahead mechanism help them catch up with FUSE-PLFS w/ DirectIO.

5.2.2 Open and close time
Open time results of the two systems are shown by Fig. 12. SHC keeps staying at a stable low level of open latency, while open
times of both FUSE-PLFS default and FUSE-PLFS w/128K buf oppositely present much higher. The open time of FUSE-PLFS
shows a sharp increment with the growth of not only file size but also a number of processes. When opening a file, FUSE needs
to create a corresponding handle in its kernel module before delivering the open() request to PLFS7. There may be a number
of lock competitions among queues in FUSE’s kernel module. More importantly, FUSE has to flush its kernel cache before each
open operation to ensure data consistency, which impacts the open time seriously. And large file size means cache flushing may
take longer before open(). In contrast, all of SHC-PLFS, Lustre, and FUSE-PLFS w/ DirectIO do not need to worry about these
overheads. Thus, they present extremely low open time compared to both FUSE-PLFS default and FUSE-PLFS w/128K buf
with the growth of the file size.

However, the close time of SHC-PLFS and the three FUSE cases fluctuate irregularly and show serious inferiority compared
to Lustre. Because PLFS has to flush all the related caching data and update lazy metadata to the underlying storage when closing
a file. Thus, their latency is far longer than Lustre.

5.3 Comparison with LDPLFS
As we mention in Section 3, LDPLFS is attached to the application process and can not communicate with other processes.
Without using MPI-IO which is seldom used outside the HPC center, LDPLFS can not handle concurrency which may cause
data consistency problems. We discuss their tight coupling in Section 3.

Generally, LDPLFS works well for data reads. When it comes to concurrent writes to a single namespace, it is another
story. If more than one processes try to write to the same file, multiple writes may not be issued on the correct locations and

Page 15 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

16 AUTHOR ONE ET AL

(a) Open time vs. file sizes

(transfer size=64KB, 16 processes)

4 16 64 256 1024

File size(MB)

0

1

2

3

4

T
im

e
(s

)

(b) Open time vs. process #

(file size=256MB, transfer size=64KB)

4 8 16

Number of processes

0

0.5

1

1.5

2

T
im

e
(s

)

(c) Close time vs. file sizes

(transfer size=64KB, 16 processes)

4 16 64 256 1024

File size(MB)

0

1

2

3

4

T
im

e
(s

)

10-3

(d) Close time vs. process #

(file size=256MB, transfer size=64KB)

4 8 16

Number of processes

0

1

2

3

4

T
im

e
(s

)

10-3
Lustre FUSE-PLFS default on Lustre FUSE-PLFS w/ 128K buf on Lustre FUSE-PLFS w/ DirectIO on Lustre SHC-PLFS on Lustre

FIGURE 12 (a) and (b) are comparisons of open time between SHC-PLFS and FUSE-PLFS; (c) and (d) are related to close time.

may introduce data overlapping. Such communications amongst the applications can be achieved via FUSE, this mechanism is
eliminated when FUSE is bypassed. This could lead to a severe data inconsistency problem. Furthermore, LDPLFS does not
take care of the miscalling close() in applications. In this case, any lazy I/O operations may lead to a problem that metadata
would not be persistently stored as the consequent plfs_close() will not be invoked before a process exits.

Even though LDPLFS does not suit scenarios without MPI-IO, it gives the upper bound of SHC’s performance since SHC is
based on the preload library method. And Wright et al. has compared LDPLFS with PLFS deployed with MPI-IO and LDPLFS
showed shortages in the performance. So that we do not need to compare SHC with the PLFS with MPI-IO.

Thus, we run additional tests on a 9-node cluster to compare SHC’s performance with LDPLFS. The cluster is equipped with
Intel Xeon E5-2603 and 16GB DDR4 memory for each node and runs on a PVFS file system. Fig.13 compares performance
between LDPLFS and SHC. The results are the average of the 5 tests and the result errors of the six cases range between 2%
and 8%. As we anticipate, LDPLFS hooking method shows an outstanding performance. We can observe that SHC retains a
similar read performance compared to LDPLFS. The little advantage is within the error range. But SHC can reach 65-96% write
performance of LDPLFS, which is mainly due to the SHC additional metadata management. Even so, SHC shows an acceptable
performance on both reading and writing.

(a) Write a 1GB file

1 8 16

Number of processes

0

300

600

900

1200

B
a

n
d

w
id

th
 (

M
B

/s
)

(b) Read 1GB data from a 32GB file

1 8 16

Number of processes

0

600

1200

1800

2400

3000

B
a

n
d

w
id

th
 (

M
B

/s
)

SHC-PLFS, 4KB LDPLFS, 4KB SHC-PLFS, 64KB LDPLFS, 64KB SHC-PLFS, 1MB LDPLFS, 1MB

FIGURE 13 Both writing and reading comparisons are under a different number of processes and transfer sizes. (a) Each data
block is synchronized after executing write(); (b) We release cache between two workloads.

We present a small experiment to study the potential deficiency of LDPLFS. An OrangeFS (PVFS) is running on top of the
cluster that consists of four compute nodes and four data servers. The total storage capacity of the cluster is 4TB. We fork four
processes to emulate four independent applications and make them write to the same file in the PLFS frontend. The file is written
in an append mode. Table 3 shows the recorded file size via stat() function under the three writing methods (FUSE, SHC,
and LDPLFS). We notice that LDPLFS presents only a quarter amount of data from the frontend while storing all four pieces of
data at the backend. This indicates that LDPLFS treats the four writes independently and mis-updates the metadata due to the
lack of synchronizations.

Page 16 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 17

TABLE 3 File sizes(KB) after writing by four processes
per process total size FUSE SHC LDPLFS

64 256 256 256 64
256 1024 1024 1024 256
1024 4096 4096 4096 1024

In addition to the misrepresenting data sizes, we design another small experiment to investigate the missing close() scenario.
We create a process to open a file, write data, force it to exit without invoking close(), and examine the corresponding metadata.
We observe that the metadata of the file is NULL while the written data is stored at the backend. The major reason is that without
FUSE intervention, kernels may not be notified to flush the metadata only if applications raise explicit close() calls.

5.4 Evaluation on A Real World Application
We further evaluate SHC with the Beacon system which is an I/O monitoring system of TaihuLight Supercomputer. Beacon
is developed under POSIX standard and started to monitor the TaihuLight supercomputing machine in 2017. One of the main
operations of Beacon is to collect I/O characteristics of TaihuLight and asynchronously flush them to a Lustre cluster every
minute with a large number of log files. The log files are then integrated into one file asynchronously on Lustre. The periodical
file integration becomes an increasing burden of Beacon as compute clusters go up-scaling. Beacon is trying to handle this
problem by aggregating discrete logs into a shared file during the collection of I/O characteristics. In this way, Beacon can reduce
redundant labor for integration after it flushes the logs to Lustre. However, Lustre intends to achieve higher I/O bandwidth by
accessing large-sized files, which may not fit Beacon’s I/O patterns where multiple log files are aggregated into one file (a.k.a.
N-1 I/O pattern). With the assistantship of SHC, Beacon can directly work with PLFS and take benefit of PLFS in handling N-1
I/O accesses without any code modification.

Thus, we integrated an SHC prototype in Beacon and implemented it on a TaihuLight testbed system. The Beacon system we
are testing consists of four servers, each of which has two processes. The data for the experimental test is collected by Beacon
for four days on a TaihuLight subsystem with 4096 compute nodes. The data size is 39GB, 35GB, 20GB, and 32GB for each
day correspondingly. Fig. 14 demonstrates the data write time comparison of three cases: 1. Beacon’s current data management
methodology where multiple log files are written to Lustre then aggregated into one file (denote as “Beacon"), 2. Beacon’s
attempt to write log files to a shared file concurrently while Lustre is in charge of data consistency (denote as “Beacon-SF") 3.
Beacon that integrated with SHC mechanism (denote as “Beacon-SHC").

Accumulative I/O time of processing logs from 4096 computer nodes

Day1 Day2 Day3 Day4
0

200

400

600

T
im

e
(s

)

Beacon Beacon-SF Beacon-SHC

FIGURE 14 Data write time comparison

We can observe from Fig. 14 that SHC-assisted Beacon ("Beacon-SHC") outperforms the existing Beacon solution mainly
because SHC simplifies the data processing routines by combining the data writing and aggregation into a single step. We also
find that Beacon-SHC performs 1x quicker than Beacon-SF, where Beacon uses Lustre to maintain data consistency while it
writes multiple log files into one shared file. The Lustre Distributed Lock Management mechanism (a.k.a. LDLM) introduces a
significant overhead towards metadata when Beacon tries to write to a shared file.

Page 17 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

18 AUTHOR ONE ET AL

6 DISCUSSION

Scalability: The SHC introduces an SPS as a centralized server to guarantee data consistency. Although SPS handles only a
part of metadata operations, it will inevitably fall into scalability problems since there is only one server currently. It should be a
key challenge towards the upscaling of computer systems. But it could be solved by improving the design of SPS for scalability,
which is like the development of some existing parallel file systems. For example, early Lustre21 had only one metadata server
(MDS) and it nowadays can serve multiple MDS after implementing the Distributed Name Space (DNE) technique on it. SPS
can theoretically use the similar idea of techniques like DNE to extend the number of servers. Thus, it could be future work to
solve the scalability problem.

MPI-IO: MPI-IO provides a low-level interface to carry out parallel I/O. There barely have tools to analyze what kind of
data is stored in the file using MPI-IO API22. Data consistency could be a problem if we transform API from POSIX to MPI-
IO using LD_PRELOAD. MPI-IO relaxes POSIX semantics and defines an interface that allows applications to manage cache
coherency themselves. Even though the MPI_FILE_SYNC command gives applications a guarantee about the freshness of data
by controlling when data and metadata are flushed and re-validated, this mechanism can not be replaced by LD_PRELOAD
automatically. What’s more, the data consistency by MPI_FILE_SYNC is restrained within a process. When it comes to data
consistency across multiple processes, the command may not be competent. SHC, on the other hand, extends the functionality of
local consistency under POSIX and maintains data consistency across multiple processes. It can be a more considerable solution
for regular users.

Stack-ability: Different from a common file system, stackable file systems lack kernel components so that developers can be
more succinct to achieve their parallel ideas. Although stackable file systems generally rely on some frameworks like FUSE, the
number of parallel file system products would meet a swift growth if extra overheads caused by the framework can be a restraint
to a lower level.

The performance gain in our experiment with FUSE exempted proved that FUSE does have drawbacks, and could be a
bottleneck, especially on parallel file systems. When developing and deploying parallel file systems, the tradeoff upon whether
to put the system in user space or kernel space should be considered. A reliable file system kernel module is certainly more
efficient than a user-space library. As it is in kernel space, it is more efficient to do memory management and utilize cache
coherency. However, many parallel file systems do not have an official in-kernel deployment option, which means only FUSE
or a proprietary API is available to the developer, introducing a significant overhead on developing, debugging, and deploying
time and costs.

We believe FUSE is usually not an optimal solution for deploying parallel file systems if FUSE is not fine-tuned to fit the
file system design. First, parallel file systems are usually large-scale and capable of highly concurrent I/Os. The file system
itself could handle concurrent I/Os very well, but FUSE could introduce an overhead here because of the internal queuing or
serialization. Second, stackable parallel file systems are more like a file organizer, but not an actual file keeper, thus all the
organizing jobs could be done in user-space without any kernel crossings before the final underlying operation. An interposition
library like libplfs is well suited for the job while FUSE is too heavyweight. Finally, the isolation between user space and kernel
space is firmer than ever thus it is time to consider reducing system call frequencies by moving some non-kernel jobs to the
user-space.

7 RELATED WORK

File System Middleware: There are several I/O middleware layers currently developed for HPC environments. Reaching exas-
cale I/O performance tends to rely on these middleware layers capable of managing parallel I/O workloads. Work has been
conducted on matching the user view of parallel I/O to optimize workloads on a parallel file system, but PLFS takes this further
and attempts to mask I/O workload and system configuration parameters from users. Similar to the PLFS project, the Adapt-
able I/O System (ADIOS) from Oak Ridge National Laboratory is an I/O library and API for scientific codes that efficiently
groups scientific array data and is capable of writing the data in a log-structured format23. The Distributed Application Object
Storage (DAOS) from Sandia National Laboratory serves as the persistent storage interface and translation layer between the
user-visible object model and the requirements of the underlying storage infrastructure24. Besides, the RAMCloud Storage Sys-
tem from Stanford University offers low-latency data services by aggregating the main memory of thousands of servers for a
single coherent key-value store25. These projects provided file system deployment and optimization ideas.

Page 18 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 19

User-level File Systems: There are many industrial level or academic use file systems that reside in user space, like Way-
back26, ChunkFS27, HydraFS28 and DeltaFS29. Many popular parallel and distributed file systems also provide an option
to be mounted via FUSE, like PLFS4, CephFS20 and PVFS30. There are also several researchers designed extensions for
FUSE16,31,32,33. FUSE is such a common mechanism in developing new file systems for distributed computing and high-
performance computing domains. Due to the overhead that FUSE introduced, developers have to balance the simplicity and
performance overhead by FUSE. Vangoor et al. proposed a detailed discussion of the architecture of FUSE and its pros and
cons7. The study further compares FUSE’s performance with different workloads in various aspects such as handling metadata,
handling I/O, and managing diverse devices. The wide usage of FUSE motivates us for further research on it.

Parallel File Systems: Parallel file systems have a critical position in high-performance computing. We have mentioned many
parallel file systems in our paper. There are many popular research parallel file systems like Galley34, PPFS35 and PIOUS36.
These parallel file systems usually have experienced decades growing and some were widely deployed in HPC data centers.
Some modern high performance distributed or parallel file systems are, for example, Lustre1, CephFS20 and OrangeFS37. The
aforementioned parallel file systems have internal mechanisms to ensure data consistency via one or more metadata servers.
Parallel file systems usually maintain a distributed lock mechanism to ensure metadata consistency. Operations from applications
then are uniformly delivered to clients via the POSIX interface and performed locally. Such a centralized processing mechanism
avoids the contention problem amongst applications.

Dynamic library: Dynamic library offer functionalities for applications without modifying their source code. LDPLFS19
proposed a dynamic linking library to eliminate additional kernel accesses which are introduced by FUSE. However, LDPLFS
may lead to writing inconsistency issues if applications do not take care of the synchronization problem. Other dynamic linking
cases are similarly designed to assist specific stackable file systems–TableFS38 and FusionFS39, for example–to offer another
implementation improving performance or achieve additional functionality. Direct-Fuse is a framework aiming at bypassing
FUSE for general applications40. Direct-Fuse shares a similar idea of the dynamic library, but it is more application-dominated.
The major problem of existing dynamic linking library mechanisms is that the library is determined by application processes in
the user space, which makes communications amongst applications difficult.

8 CONCLUSION AND FUTURE WORK

In the paper, we proposed an implementation scheme for a user-level file system to improve its performance as well as solve the
consistency problem. We study the overheads of FUSE which is a commonly used framework to deploy a user-level file system
and find an alternative implementation for the user-level file system. Our scheme helps the user-level file system to get rid of
FUSE with a dynamic library, and introduces a lightweight server to solve the data consistency problem caused by the lack of
FUSE.

We first conduct a case study to examine the effects of FUSE on the performance of user-level file systems. Then we implement
a preliminary solution for "PLFS without FUSE" using a dynamic library on CephFS. We then present a mechanism called
SHC to reduce kernel crossings of a parallel file system in user-space based on the discussion of the limitation of FUSE when
mounting user-level parallel file systems. The SHC is then applied to PLFS and is further implemented on an 8-node Sunway
TaihuLight HPC testbed Lustre file system with InfiniBand connections. fs_test benchmark testing results indicate that kernel
crossings become a major I/O performance bottleneck in a concurrent I/O circumstance for user-level parallel file systems.

The current SHC has its limits in handling scalability, which should be a key challenge towards computer systems upscaling.
We will address this carefully in future work. As an ongoing project, we will make efforts to introduce redundancy to the
centralized server. We will also handle the scalability by applying a dedicated cluster and maintaining metadata parallelly, similar
to Lustre’s distributed name-space technique.

ACKNOWLEDGMENTS

Shu Yin’s research is supported by the China Postdoctoral Science Foundation under Grant 2015M572708, and ShanghaiTech
University under a start-up grant. Xiaomin Zhu’s work is supported by the National Natural Science Foundation of China under
Grant 61572511, and the Scientific Research Project of National University of Defense Technology under Grant ZL16-03-09.

Page 19 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

20 AUTHOR ONE ET AL

References

1. Cluster File Systems I. Lustre: A Scalable, High-Performance File System. 2002.
2. Schmuck F, Haskin R. GPFS: A Shared-Disk File System for Large Computing Clusters. In: FAST ’02. USENIX

Association; 2002; Berkeley, CA, USA.
3. Edge J. The OrangeFS distributed filesystem. 2015.
4. Bent J, Gibson G, Grider G, et al. PLFS: A Checkpoint Filesystem for Parallel Applications. In: ; 2009
5. Wikipedia . Filesystem in Userspace. 2018.
6. Tarasov V, Gupta A, Sourav K, Trehan S, Zadok E. Terra Incognita: On the Practicality of User-Space File Systems. In:

USENIX Association; 2015; Santa Clara, CA.
7. Vangoor BKR, Tarasov V, Zadok E. To FUSE or Not to FUSE: Performance of User-Space File Systems. In: USENIX

Association; 2017; Santa Clara, CA: 59–72.
8. LANL . fs_test. 2017.
9. Lipp M, Schwarz M, Gruss D, et al. Meltdown. ArXiv e-prints 2018.

10. Chen C, Liu J, Zou Y, Deng T, Zhu X, Yin S. A Case Study on the Efficiency of User-Level Parallel File Systems. In: ;
2019: 90-97

11. Zou Y, Chen C, Deng T, et al. SHC: A Method for Stackable Parallel File Systems in Userspace. In: ; 2019: 1374-1381
12. User:Sven . FUSE structure(wiki). 2008.
13. Hoskins ME. Sshfs: super easy file access over ssh. Linux Journal 2006; 2006(146): 4.
14. Davies A, Orsaria A. Scale out with GlusterFS. Linux Journal 2013; 2013(235): 1.
15. Ouyang X, Rajachandrasekar R, Besseron X, Wang H, Huang J, Panda DK. CRFS: A lightweight user-level filesystem for

generic checkpoint/restart. In: IEEE. ; 2011: 375–384.
16. Ishiguro S, Murakami J, Oyama Y, Tatebe O. Optimizing local file accesses for FUSE-based distributed storage. In: IEEE.

; 2012: 760–765.
17. Yang B, Ji X, Ma X, et al. End-to-end I/O Monitoring on a Leading Supercomputer. In: ; 2019; Boston, MA: 379–394.
18. IOR:Parallel filesystem I/O benchmark. 2011. https://github.com/LLNL/ior.
19. Wright SA, Hammond SD, Pennycook SJ, Miller I, Herdman JA, Jarvis SA. LDPLFS: Improving I/O Performance without

Application Modification. In: ; 2012: 1352-1359
20. Weil SA, Brandt SA, Miller EL, Long DDE, Maltzahn C. Ceph: A Scalable, High-performance Distributed File System.

In: OSDI ’06. USENIX Association; 2006; Berkeley, CA, USA: 307–320.
21. Wikipedia . Lustre (file system). 2018.
22. Gropp W, Lusk E, Thakur R. Using MPI-2: Advanced Features of the Message-Passing Interface. The MIT Press . 1999
23. Lofstead JF, Klasky S, Schwan K, Podhorszki N, Jin C. Flexible io and integration for scientific codes through the adaptable

io system (adios). In: ACM. ; 2008: 15–24.
24. Lofstead J, Jimenez I, Maltzahn C, Koziol Q, Bent J, Barton E. DAOS and friends: a proposal for an exascale storage system.

In: IEEE Press. ; 2016: 50.

Page 20 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

AUTHOR ONE ET AL 21

25. Ousterhout J, Gopalan A, Gupta A, et al. The RAMCloud Storage System. ACM Trans. Comput. Syst. 2015; 33(3). doi:
10.1145/2806887

26. Cornell B, Dinda PA, Bustamante FE. Wayback: A user-level versioning file system for linux. In: ; 2004: 19–28.
27. Henson V, Ven v. dA, Gud A, Brown Z. Chunkfs: Using Divide-and-Conquer to Improve File System Reliability and Repair..

In: ; 2006.
28. Ungureanu C, Atkin B, Aranya A, et al. HydraFS: A High-Throughput File System for the HYDRAstor Content-Addressable

Storage System.. In: . 10. ; 2010: 225–239.
29. Carns P, Lang S, Ross R, Vilayannur M, Kunkel J, Ludwig T. Small-file access in parallel file systems. In: ; 2009: 1-11
30. Carns PH, III WBL, Ross RB, Thakur R. PVFS: A Parallel File System for Linux Clusters. In: USENIX Association; 2000;

Atlanta, GA.
31. Narayan S, Mehta RK, Chandy JA. User space storage system stack modules with file level control. In: Citeseer. ; 2010:

189–196.
32. Sundararaman S, Visampalli L, Arpaci-Dusseau AC, Arpaci-Dusseau RH. Refuse to crash with Re-FUSE. In: ACM. ; 2011:

77–90.
33. Rajgarhia A, Gehani A. Performance and Extension of User Space File Systems. In: SAC ’10. ACM; 2010; New York, NY,

USA: 206–213
34. Nieuwejaar N, Kotz D. The Galley parallel file system. Parallel Computing 1997; 23(4-5): 447–476.
35. Huber Jr JV, Chien AA, Elford CL, Blumenthal DS, Reed DA. PPFS: A high performance portable parallel file system. In:

ACM. ; 1995: 385–394.
36. Moyer SA, Sunderam V. PIOUS: a scalable parallel I/O system for distributed computing environments. In: IEEE. ; 1994:

71–78.
37. Bonnie MMD, Ligon B, Marshall M, et al. OrangeFS: Advancing PVFS. 2011.
38. Ren K, Gibson G. TABLEFS: Enhancing Metadata Efficiency in the Local File System. In: USENIX; 2013; San Jose, CA:

145–156.
39. Zhao D, Zhang Z, Zhou X, et al. FusionFS: Toward supporting data-intensive scientific applications on extreme-scale

high-performance computing systems. In: ; 2015
40. Wang T, Mohror K, Moody A. Direct-FUSE : Removing the Middleman for High-Performance FUSE File System Support.

2018.

Page 21 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://dx.doi.org/10.1145/2806887
http://dx.doi.org/10.1145/2806887

