
ADA: An Application-Conscious Data Acquirer for
Visual Molecular Dynamics

Abstract
Visual molecular dynamics (VMD) has been widely used

by numerous molecular dynamics (MD) applications to ani-

mate and analyze the trajectory of an MD simulation. One

challenge faced by domain scientists, however, is how to

filter out inactive data (i.e., data irrelevant to the subject)

from the enormous output of an MD simulation. To solve

it, we propose ADA (application-conscious data acquirer),

a light-weight file system middleware that can perform an

application-conscious data pre-processing. It provides host

CPUs with only data needed instead of an entire raw dataset.

Next, we implement an ADA prototype, which is then in-

tegrated into three computing platforms: an SSD server, a

nine-node OrangeFS storage cluster, and a fat-node server

with 1 TB memory. Further, we evaluate ADA by running

a computational biology application on the three platforms.

Our experimental results show that compared to a traditional

file system an ADA-assisted file system improves data pro-

cessing turnaround time by up to 13.4x and reduces up to

2.5x memory usage for data rendering. Besides, ADA allows

the 1TB memory server to render more than 2x VMD graphs

while saving 3x energy consumption.

CCS Concepts • Software and its engineering → File
systems management; Secondary storage.

Keywords File System Middleware, Data Layout, Memory

Utilization, Energy Conservation, VMD

ACM Reference Format:
. 2021. ADA: An Application-Conscious Data Acquirer for Visual

Molecular Dynamics. In ,. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/1122445.1122456

1 Introduction
Visual molecular dynamics (VMD) is a popular molecular

graphics program designed for modeling, visualization, and

analysis of biological systems such as proteins, nucleic acids,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ICPP ’21, ICPP 21,
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

and lipid bilayer assemblies [11]. It has been widely adopted

by numerous molecular dynamics (MD) applications as a

graphical front end for rendering and animating molecule

undergoing simulations on a remote computer. MD applica-

tions span a wide range of scientific domains, from VASP

for chemical materials [14], XcrySDen for crystallines [13],

to NAMD for computing and structural biology [17]. These

applications normally generate a huge amount of simulation

data for a visualization tool like VMD to visualize and ana-

lyze. For example, data collected at the European Molecular

Biology Laboratory demand a storage capacity of 160 PB as

of late 2018 [4]. In addition to holding raw data for CPUs

to solve various computational problems, extra storage is

needed to accommodate processed data and intermediate

data from separate computational steps [3].

The huge amount of data generated by various MD ap-

plications plus their demands for a high-performance and

energy-efficient storage system put a tremendous pressure

on traditional rotation-based hard disk drives (HDDs). Since

non-volatile memory (NVM) technologies (e.g., flash mem-

ory) can offer a much better I/O performance and energy-

efficiency [7], NVM-based solid state drives (SSDs) started

to replace HDDs in a wide spectrum of data-intensive ap-

plications [31]. Although SSDs noticeably improve the per-

formance of these applications, they are still relatively ex-

pensive compared with HDDs. Besides, we observed that in

many MD applications only a portion of a raw dataset are

interested in or relevant to the study subject of a domain

scientist. These data are called active data as they need to be

frequently accessed, and then, analyzed by host CPUs. The

rest part of the raw dataset are called inactive data, which are

either seldom visited or simply abandoned. This observation

plus the higher price of SSD motivate us to employ a cost-

effective hybrid storage systemwith both HDDs and SSDs for

MD applications. In such a hybrid storage system, relatively

expensive SSDs are employed to store active data, whereas

cheaper HDDs are used to hold inactive data. Inactive data

is also called MISC data in this paper (see Section 2.1).

In addition to the need of data layout optimization, we

found that many MD applications also require a graphical

data pre-processing procedure so that active data can be

efficiently retrieved before they are analyzed by host CPUs.

For example, GROningenMAchine for Chemical Simulations

(GROMACS) [25], anMD application designed for simulation

of proteins, uses VMD to read the trajectories of atoms and

then render them into a 3D animation. All raw data (i.e., tra-

jectories of atoms and molecules) are compressed in order to

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

save storage space. In this MD application, domain scientists

are only interested in protein data (i.e., active data) as their

goal is to investigate the behavior of proteins. However, the

volume of protein data is less than 50% of that of the entire

raw dataset as the rest part of the raw dataset is composed of

liquid and ligands data (i.e., inactive data) [25]. And yet, the

entire raw dataset needs to be decompressed in memory first,

and then, the inactive data can be filtered out. The fact that

a noticeable percentage of data in a raw dataset are inactive

data can also be inferred from other applications [22] [20]

[30] [15]. How to separate active data from noticeably large

inactive data in the first place so that only the former can

be provided to host CPUs for a further analysis becomes a

challenge faced by the domain scientists. We found that this

challenge exists in a wide range of MD applications such as

VASP [14], XCrySDen [13], and LAMMPS [18] when they

have visualization needs. The existing approach to extract-

ing active data from a raw dataset degrades the performance

of a compute node as it causes three issues: (1) each time a

raw dataset is acquired a sequence of data pre-processing

steps need to be performed in order to generate active data,

which is a time-consuming repeated effort; (2) a large mem-

ory space is needed to store the original compressed raw

data, the decompressed raw data, and the active data, which

wastes the memory of a compute node because inactive data

should not be fetched into memory in the first place; (3) pre-

cious CPU time of a compute node is wasted as it is used

to perform a very simple data pre-processing procedure in-

stead of sophisticated operations such as convolutions or

high-dimensional matrix multiplications (see Fig. 3a).

To solve this common challenge of MD applications, in

this paper we propose a light-weight file system middleware

called ADA (application-conscious data acquirer) dedicated

to VMD. ADA sits between VMD and an existing file system

to conduct an application-conscious data pre-processing on

a storage node. In particular, based on the I/O access pattern

of an MD application, ADA is able to categorize its raw data

into multiple groups with each having a distinct tag. Thus,

ADA can provide host CPUs with only data needed instead

of an entire raw dataset. As a result, only active data will be

transferred from a storage node to a compute node so that

all three issues mentioned above can be avoided (see Fig. 3).

Further, we implement an ADA prototype, which is then

integrated into three computing platforms: an SSD server, a

nine-node OrangeFS storage cluster, and a fat-node server

with 1 TB memory. Finally, we use a biology MD application

called GPCR (G-Protein Coupled Receptor) [10] running on

the three platforms to evaluate the efficacy of ADA. Our

experimental results show that compared to a traditional

file system an ADA-assisted file system improves data pro-

cessing turnaround time (see Section 2.1) by up to 13.4x

and reduces up to 2.5x memory usage for data rendering

on the SSD server. Besides, ADA allows the fat-node server

with 1 TB memory to render more than 2x VMD graphs

Table 1. Data Components of Three .xtc Files

Number of

frames

Compressed file size (MB) Protein data

fraction (%)Complete data Protein data

626 100 44 44

1,251 200 98 49

5,006 800 348 43.5

while saving more than 3x energy consumption. Although

ADA is built for VMD, its framework can be extended to

support other computational science applications where a

similar data pre-processing challenge exists. As long as an

application can provide the structure of its raw data in a file

format, ADA can acquire an understanding of this structure

through analyzing the structure file. Essentially, ADA is an

application-conscious data pre-processing middleware that

can be integrated into an existing file system.

Main contributions of this paper include (1) a light-weight

file system middleware called ADA is proposed to largely

improve the performance, memory utilization, and energy-

efficiency of MD applications; (2) an ADA prototype is im-

plemented, and then, integrated into three real-world com-

puting platforms; (3) a comprehensive experimental study is

provided to fully evaluate the efficacy of the ADA prototype.

The rest of the paper is organized as follows. Section 2

provides the background andmotivation of this research. The

design and implementation details of ADA are presented

in Section 3, which is followed by an evaluation of ADA

shown in Section 4. Section 5 summarizes the related work.

Finally, Section 6 concludes this paper by pointing out a

future direction of this research.

2 Background
In this section, we first briefly introduce VMD processes in

visualizing data generated from a biology MD application

called GPCR (G-Protein Coupled Receptor) [10]. Next, we

explain how an ADA-assisted approach performs VMD data

pre-processing differently from a traditional way.

2.1 VMD in the GPCR MD Application
VMD can act as a graphical front end for an external MD

application by displaying and animating a molecule under-

going simulation on a remote computer. The challenge of

operating VMD visualization on an ordinary cluster with

limited memory capacity is that it needs to handle a large

amount of data. Recently retrieved frames should be evacu-

ated from the limited memory to make room for subsequent

phases of frames. Frequent data swapping operations cause

a low data hit rate under random frames accesses (e.g., re-

playing the frames back and forth), which further leads to a

non-fluent VMD animation playback.

The goal of the GPCR MD application is to facilitate high-

resolution structure-function studies on medically important

proteins known as G-protein coupled receptors (GPCRs) by

2

making all data publicly available. In 2016, Hua et al. deter-
mined and analyzed the high-resolution atomic structure of

human cannabinoid receptor 1 (CB1), which is also known as

the marijuana receptor. These new findings provide insight-

ful clues to understand why some drugs that interact with

this receptor have had unexpectedly complex and sometimes

harmful effects, while the utility of the crystal structure may

provide inspiration for drug design toward refining efficacy

and avoiding adverse effects [10].

Two major types of files employed by VMD in the GPCR

MD application are .xtc (i.e., XTrkCAD) files and .pdb (i.e.,

protein data bank) file. While a .xtc file contains compressed

trajectories of atoms and molecules, a .pdb file includes the

structure of a protein. The data components of three sample

trajectory files used in the GPCR MD application [10] are

summarized in Table 1. From this table, one can see that

the percentage of protein data in these three trajectory files

varies from 43.5% to 49%. The implication is that more than

half of the data (i.e., MISC data) stored in a .xtc file need to be

first decompressed and then abandoned. Note that one .pdb

file may contain the structure of one protein or structures of

multiple proteins. One .xtc file is guided by a corresponding

.pdb file. Besides, one .pdb file can guide multiple .xtc files,

which represent different atom motion phases. Fig. 1 shows

a frame of 3D graph of the entire raw data, protein data, and

MISC data of eight .xtc files, respectively. Fig. 1b is modified

(or “cleaned”) from Fig. 1a so that only protein data are

displayed. Fig. 1c shows the liquid that surrounds the protein.

Now we explain how VMD processes these two types of

files to generate 3D animations for proteins. Fig. 2 illustrates

a data processing procedure embedded in the source code

of VMD. The procedure consists of two phases: data pre-

processing and data rendering (i.e., data replaying). In phase

one, VMD first checks a protein data bank file to retrieve the

protein structure. Guided by the protein structure, VMD is

then able to retrieve compressed trajectories from a corre-

sponding .xtc file. Once the .xtc file is loaded into memory,

VMD requires an additional memory space to accommodate

uncompressed trajectories, which are interpreted as an array

of frames. Finally, VMD rebuilds the 3D animation replay

based on these frames. The total time taken between the

retrieval of files (i.e., .xtc and .pdb) from storage and the

completion of 3D graphics rendering is defined as data pro-

cessing turnaround time in this paper. It is the sum of data

pre-processing time and data rendering time (see Fig. 2).

This time-consuming decompression and MISC data filter-

ing procedure becomes a constant burden when biologists

repeatedly study the behaviors of proteins.

Retrieve a .pdb File

Retrieve a .xtc File

Decompress the .xtc File

Filter Decompressed Data

Render a 3-D

Animation

Data Pre-processing Data Rendering

Figure 2. VMD data processing procedure.

2.2 VMD Data Processing Workflow
In this section, we first explain how a traditional VMD data

processing procedure works on a cluster with both stor-

age nodes and compute nodes. Next, we present our ADA-

assisted VMD data processing workflow.

Fig. 3a shows a traditional VMD data processing work-

flow. A parallel file system like PVFS [8] is running on top

of each storage node. While some storage nodes employ

HDDs, others utilize SSDs. The entire compressed raw data

are transferred into a group of compute nodes through a

high-performance network architecture like InfiniBand. Af-

ter receiving the raw data, the compute nodes first need to

perform a data pre-processing including decompressing raw

data and scanning for active data. Finally, all active data are

fed into VMD to generate 3D animations. Note that the raw

data are compressed and then transferred to compute nodes.

Thus, raw data transferring is not a performance bottleneck.

As we mentioned before, data pre-processing in compute

nodes becomes a huge burden as it wastes precious CPU

time and memory space of a compute node. Unlike a tradi-

tional VMD data processing scheme, an ADA-assisted VMD

exploits the computing resources of storage nodes to per-

form data pre-processing. Fig. 3b illustrates how it works.

First, storage nodes are logically divided into two groups:

one PVFS file system manages all storage nodes with HDDs

and another PVFS file system operates on all storage nodes

with SSDs. A prototype of ADA is implemented as a middle-

ware, which directly communicates with the two PVFS file

systems. Once a raw dataset is passed to ADA, it starts to

perform a data pre-processing procedure, after which only

decompressed active data will be transferred to compute

nodes. Consequently, compute nodes can concentrate on the

(a) Original raw data (b) Protein dataset (c) MISC dataset

Figure 1. VMD molecular structure rendered in one 3D graph frame.

3

most important task, which is rendering active data into a

3D animation.

... ...

PVFS

...

... ...

PVFS

Compute Nodes

!a" !#"

 PVFS

Compressed Raw Data Data Pre-Processing

1. Decompression

2. Locating Active Data
ADA

Active Data 1 Active Data m...

Data Pre-Processing

1. Decompression

2. Scanning Active Data

Rendering

...

Compute Nodes

Rendering

Storage NodesStorage Nodes

HDDs HDDs SSDs SSDs HDDs HDDs SSDs SSDs

Figure 3. (a) Traditional VMD; (b) ADA-assisted VMD.

3 Design and Implementation of ADA
In this section, we present the design and implementation

details of ADA. We first offer an overview of the ADA ar-

chitecture, which is followed by an introduction to its two

major components. Finally, we show how we implement it

using VMD as a target application.

3.1 Architecture of ADA
Fig. 4 shows the architecture of ADA. A user API layer includ-

ing either high-level I/O libraries or POSIX API is running

on top of ADA. By employing a complex POSIX API, more

architectures and richer functionality can be supported. Be-

low the user API layer is ADA, which consists of two major

components: a data pre-processor and an I/O determinator.

The data pre-processor categories a raw dataset, divides it

into multiple groups, labels each group, and assigns a target

file system to each group based on its label. The data decom-

pressor will be invoked if the original data is compressed to

save space. The I/O request pattern of an application guides

the division of a raw dataset. For example, a scientific raw

dataset representing different levels of precision will be di-

vided into a few groups: one group representing short preci-

sion, one group standing for a moderate degree of precision,

and several other groups for a high degree of precision. Since

requirements of data accuracy vary, the number of groups

of a raw dataset changes accordingly. The I/O determinator

serves as the primary storage interface, which redirects all

I/O calls to the underlying parallel file systems (e.g., ext4 or

PVFS) and retrieves data from the target file systems upon

requests. At the bottom of Fig. 4 are file systems, which serve

as interfaces for storing selected groups of data. This layer

can be considered as a physical disk interface layer. Take

PVFS for example, it replaces the API on individual stor-

age devices with an interface friendlier to the containers of

objects used in the higher level of layers.

Computational Biology Applications
 (e.g. visual molecular dynamics)

High-Level I/O Libraries MPI-IO POSIX

Underlying File System(s)
(e.g. xfs, ext4, Lustre, PVFS, etc.)

ADA: Application-Conscious Data Acquirer

Data Categorizer

Data Pre-Processor

Label Manager

I/O Determinator

Labeler Indexer

I/O Dispatcher I/O Retriver

Data Decompressor

User API Layer

Figure 4. ADA architecture.

3.2 Data Pre-Processor
The data pre-processor has three components: a data catego-

rizer, a label manager, and a data decompressor. The main

purpose of the data pre-processor is to perform data pre-

processing operations in storage nodes rather than compute

nodes so that the latter can concentrate on data rendering. Es-

sentially, these data pre-processing operations are intended

to offer functionalities such as data rearrangement and data

filtering such that only active data will be finally transferred

to compute nodes. As a result, data replaying can be quickly

executed on compute nodes, which is the most important

task for biologists. Fig. 5 illustrates the data workflow of

ADA. Once a dataset of an application arrives, the data de-

compressor first decompresses it into raw data and then the

data categorizer divides the raw data into a group of data

subsets based on the access behavior of the application. The

labeler then assigns a tag to each data subset and stores its

path on the underlying file system for later use. Note that

the labeler manages tag information separately from data

subsets. In other words, no additional information is injected

to any of data subsets so that tags will not affect the repre-

sentation of any data subset. When users send data queries

for certain groups of datasets, the indexer uses tags from

the queries to look for paths of datasets on the underlying

file systems and passes them to the I/O retriever. The I/O re-

triever then raises I/O requests to the underlying file systems

and then obtains the requested data.

The idea of data pre-processing is not new. However,

offloading data re-organization operations from compute

nodes to storage nodes has been proved to be effective in

terms of reducing the total time of data manipulation [16].

This is because fewer participants are involved in the com-

munication patterns. In Section 3.4, we explain how the data

pre-processor is applied to VMD I/O optimization in details.

3.3 I/O Determinator
The core idea of the I/O determinator is to provide a way to

judiciously manage the I/O load of an application in storage

4

Data Categorizer

Labeler

Data

ADA

I/O Dispatcher

Indexer

I/O Retriever

Data Decompressor

Data Requests

RAW Data Data Subset 1

Data Subset i

Data Subset m

...
...

Tag 1 (Path to FS1)

Tag i (Path i to FS2)

Tag m (Path m to FS1)

...
...

Data Subset 1 Data Subset i

Data Subset m

...

Data Subset 1

Data Subset m

Data Queries

Tags

Paths

FS1 ...

Data Subset n

FS2 ...

Data Subset i

Data Subset n

...

Data Subset 1 Data Subset i

Data Subset m

...

Data Subset n

...

Data Subset n Tag n (Path n to FS2)

...

...

Data Subset i

...

Data Subset 1

Requested Data

Figure 5. ADA data workflow

nodes. Coupled with the tags and target storage path passed

from the data pre-processor, the I/O dispatcher sends each

data subset to an underlying file system. The I/O retriever

obtains the requested datasets by triggering file read via the

datasets paths that are passed by the indexer (see Fig. 5).

The I/O dispatcher is developed based on PLFS [2], a parallel

log-structure file system. Since PLFS is transparent to an

underlying parallel file system, a file system processes an as-

signed data subset as independent files without noticing that

the contents of the files have been altered from the original

data subset. Since PLFS supports multiple backends, the I/O

dispatcher modifies this feature to distribute sub datasets

with diverse target storage information to their right des-

tinations. It achieves this goal by redirecting sub datasets

to their intended backends. The underlying parallel file sys-

tem performs actual data writing/reading operations. Fig. 6

presents an example of I/O dispatching. An application cre-

ates a file called bar, causing PLFS to create two container

structures on the underlying file systems. Each of the con-

tainer consists of a top-level directory called bar/mnt* and
several sub-directories to store data subsets, where mnt* in-
dicates mount points of underlying file systems (mnt1 and
mnt2 in the example). The destination of each data subset is

determined by the labler.

/foo/bar

/foo/bar!"#$% /foo/bar!"#$&

/foo/bar!"#$%!'($()*+,*-$)%

/foo/bar!"#$%!'($()*+,*-$)"

/foo/bar!"#$&!'($()*+,*-$)#

frontend

backend

File System 1

File System 2

Figure 6. An I/O dispatching example.

3.4 Implementation of ADA
We implement a prototype of ADA, which employs VMD as

a target application. First, ADA checks if a file to be written is

generated by a target application (i.e., VMD in our case). If so,

the file will be pre-processed by ADA. Otherwise, it will not

be trapped by ADA. The data pre-processor then analyzes

the atom information from a .pdb file. Next, it categorizes the

molecules and then stores them by classes. The pseudo-code

of the data pre-processor is shown in Algo. 1. After a pdb

Algorithm 1 ADA data pre-processor module

Require: File Pathname (.pdb file)

Ensure: Data Subset Ranges, Tags of each Subset

1: 𝑝𝑑𝑏_𝑓 𝑖𝑙𝑒 ← open(Pathname)

2: /*initial standard C++ map containers to store label elements*/

3: 𝑙𝑎𝑏𝑒𝑙𝑒𝑟 ←𝑚𝑎𝑝 ()
4: 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑 ← 0, 0, 0

5: 𝑝𝑟𝑒𝑣_𝑡𝑎𝑔 ← 𝑁𝑜𝑛𝑒

6: for 𝑎𝑡𝑜𝑚 in 𝑝𝑑𝑏_𝑓 𝑖𝑙𝑒 do
7: /*Categorizer Module*/

8: 𝑡𝑎𝑔 ← GetType(𝑎𝑡𝑜𝑚)

9: /*GetType reads atom type info from the 𝑝𝑑𝑏_𝑓 𝑖𝑙𝑒*/

10: if 𝑝𝑟𝑒𝑣_𝑡𝑎𝑔 is 𝑁𝑜𝑛𝑒 then
11: 𝑝𝑟𝑒𝑣_𝑡𝑎𝑔 ← 𝑡𝑎𝑔

12: end if
13: if 𝑡𝑎𝑔 is 𝑝𝑟𝑒𝑣_𝑡𝑎𝑔 then
14: 𝑒𝑛𝑑 ← 𝑒𝑛𝑑 + 1
15: else
16: if 𝑡𝑎𝑔 not in 𝑙𝑎𝑏𝑒𝑙𝑒𝑟 then
17: 𝑙𝑎𝑏𝑒𝑙𝑒𝑟 [𝑡𝑎𝑔] ← list([𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑])
18: else
19: 𝑙𝑎𝑏𝑒𝑙𝑒𝑟 [𝑡𝑎𝑔] .𝑒𝑥𝑡𝑒𝑛𝑑 ([𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑])
20: end if
21: /*Labeler Module*/

22: 𝑝𝑟𝑒𝑣_𝑡𝑎𝑔 ← 𝑡𝑎𝑔

23: 𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 1
24: end if
25: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 1
26: end for
27: /*Store the labeler to a file named 𝑙𝑎𝑏𝑒𝑙_𝑓 𝑖𝑙𝑒 for later I/O reference */

28: 𝑙𝑎𝑏𝑒𝑙_𝑓 𝑖𝑙𝑒 ← 𝑤𝑟𝑖𝑡𝑒 (𝑙𝑎𝑏𝑒𝑙𝑒𝑟)

analysis file is generated, the data pre-processor then divides

a .xtc file according to the subset tags. If a biologist focuses on

examining the behavior of a protein via VMD, then ADAwill

process data as follows: when the .pdb and .xtc files are sent

to ADA for permanent storage, with the help of the .pdb file

ADA data pre-processor categorizes the raw dataset into two

groups: a protein dataset and a MISC dataset. The .xtc file is

then decompressed and divided into protein trajectories and

MISC trajectories with “p” and “m’’ label, respectively. ADA
data pre-processor selects an SSD-based storage system for

the “p” dataset and an HDD-based storage system for the “m”

dataset. ADA I/O dispatcher then finalizes data dispatching

operation to the underlying storage systems.

We modify and use the VMD command-line option for

molecule data loading. $ mol new foo.pdb will start

VMD and load a molecule from the file foo.pdb prior to

$ mol addfile /mnt/bar.xtc, which loads the file

bar.xtc from the frontend directory /mnt/. We modify the

addfile function to pass tag parameters to ADA. Hence $

mol addfile /mnt/bar.xtc tag p can only load

5

the subset labeled with “p”. ADA uses the tag to determine

the corresponding dropping data on the backend and calls

POSIX read to retrieve the data.

With the help of ADA, the original dataset (see Fig. 1a) is

divided into a protein subset (see Fig. 1b) and a MISC subset

(see Fig. 1c), each of which is handled independently by one

of the two separate parallel file systems.

4 Evaluation of ADA
In this section, we first evaluate ADA on an SSD server. Next,

we test it on a small cluster with both SSDs and HDDs. Lastly,

we measure its performance on a fat-node server with 1 TB

memory. Major metrics employed include raw data retrieval

time (i.e., time spent on retrieving .xtc and .pdb files from

storage to memory), data processing turnaround time (see

Section 2.1), and memory usage. Energy consumption is only

measured in the experiments conducted on the fat-node

server (see Section 4.3). Since it is almost impossible for us to

augment the memory space of a compute node of the cluster

to 1 TB, we use the fat-node server to "virtually represent"

a compute node with a 1 TB memory space. The fat-node

server testing environment can be viewed as a workaround

for a cluster whose compute node has a large memory space.

For simplicity, when we compare the performance of an

ADA-assisted file system with that of an existing file system

(e.g., ext4 or PVFS) we simply call it ADA hereafter.

4.1 Evaluation on an SSD Server
In this section, we evaluate ADA on an SSD server that

equips with an Intel®Xeon®CPU E5-2603 v4 @1.70GHz,

16GB DRAM, and two 256GB NVMe SSDs. The CentOS re-

lease 6.10 (Final) and ext4 are employed as the operating

system and the file system, respectively.

Since ADA divides and then dispatches an uncompressed

dataset to two separate locations, it only needs to provide

the protein trajectories subset for VMD visualization. The

real file size loaded by ADA is smaller than that of ext4 even

though the number of frames keeps the same. We summarize

the differences in loaded data size between ext4 and ADA

in Table 2. Note that ADA only transfers the de-compressed

protein data subset that VMD can use while ext4 transfers

the entire compressed dataset.

RawData Retrieval Time: Fig. 7a presents comparisons

in time spent on retrieving (i.e., reading) raw data (i.e., .xtc

and .pdb files) between an existing file system (i.e., ext4) and

ADA. Notations used in Fig. 7 are summarized in Table 3. For

example, D-ADA (protein) stands for the scenario that ADA

transfers a decompressed protein data subset. Fig. 7a shows

that D-ADA (all) delivers a performance similar to that of D-
ext4. This is mainly because both transfer the same amount of

data. Still, D-ADA (all) requires a slightly longer data transfer
time compared with D-ext4 because ADA needs to launch

Indexer to search tags. C-ext4 consistently performs the best

Table 2. Data Size Comparisons (ext4 vs. ADA)

Number of

Frames

Loaded Data (MB) Raw Data

(MB)ext4

(Compressed)

ADA

(De-compressed, protein)

626 100 139 327

1,251 200 277 653

1,877 300 416 980

2,503 400 555 1,306

3,129 500 693 1,632

3,754 600 832 1,959

4,380 700 970 2,285

5,006 800 1,108 2,612

because it only needs to transfer the compressed data whose

size is 1/3 of that of the raw data. On the other hand, D-ADA
(protein) has to transfer 40% of the decompressed raw data.

Data Processing Turnaround Time: In terms of data

processing turnaround time D-ADA(all) performs the same

as D-ext4 (see Fig. 7b). D-ADA(protein) performs even better

than D-ext4 (see Fig. 7b). This is because D-ADA(protein)
transfers less data. As the number of frames increases, D-
ADA(protein) delivers a much better performance than that

of C-ext4 (e.g., up to 13.4x). The reason is that the data de-

compression time becomes significantly longer than the data

transfer time as the number of frames increases. Results

shown in Fig. 7a and Fig. 7b imply that a time-consuming

data decompression process may nullify the benefits of a

shorter data transfer time gained by using a faster storage

device like an SSD. In other words, the performance bot-

tleneck of VMD data processing lies in the repetitive data

pre-processing (e.g., data decompression) rather than a low

data transfer rate. The results shown in this section demon-

strate that simply replacing slower HDDs with faster SSDs

cannot solve the problem of inefficient data pre-processing.

Table 3. Notations of Fig. 7

Notes Description

C VMD loads a compressed XTC file

D VMD loads a raw XTC file w/o compression

ADA (all) ADA transfers the entire raw data

ADA (protein) ADA transfers the protein data

Memory Usage: Comparisons in memory usage between

ext4 and ADA are presented in Fig. 7c. One can observe that

the memory usage of ext4 is over 2.5x of that of ADA when

the number of frames reaches 5,006. One can safely presume

that within the same memory capacity ADA can load 2x

frames compared with ext4. The trend in Fig. 7c indicates

that an existing file system reaches the memory limit much

earlier than ADA does. One can further presume that as

the swapping mechanism is involved to extend the memory

usage the loading time along with the latency of ext4 will be

even more significant than that of ADA. The reason is that

ADA only loads a small portion of each frame (i.e., protein

6

Figure 7. (a) Raw data retrieval time; (b) data processing turnaround time; (c) memory usage.

data). Besides, it has no need to allocate a large memory

space to accommodate the compressed data like ext4 does.

CPUWorkload: By comparing Fig. 7a with Fig. 7b, one

can see that the data decompression time dominates the data

pre-processing time in ext4. We use a profiler to examine

the burst of CPU and then visualize the results via Flame

Graph [1] in Fig. 8. One can observe from Fig. 8 that the data

decompression weights more than 50% of the CPU burst time

for VMD to build 3D graphics in ext4. Besides, CPU burst is

involved whenever a .xtc file is referenced. The conclusion is

that high-end CPUs spend more than half of its computing

power on duplication of labor.

0 10 20 30 40 50 60 70
Time (s)

ADA

Ext4

draw_lines
vfs_read
xtc_receivebits

xtc_receiveints
mdio_timestep
memcpy

Figure 8. A comparison in CPU burst time.

An extra advantage of ADA is that it is able to assist VMD

to view a dataset in a more fine-grained fashion. For exam-

ple, a user can type in the command of $ mol addfile
/mnt/bar.xtc tag p to open a .xtc file so that only the

protein data in it are fetched. Thus, ADA can help an appli-

cation better utilize the I/O bandwidth and memory space

of a computing platform.

4.2 Evaluation on a Small Cluster
The ADA prototype is implemented on a nine-node cluster,

where three nodes serve as the compute nodes while the

other six nodes serve as storage nodes. Each of the compute

nodes is equipped with a six-core Intel®Xeon®CPU E5-2603

v4 @1.70GHz CPU. Instead of managing the storage nodes

with a single file system, we implement the ADA prototype

on two independent PVFS (OrangFS) file systems with the

help of PLFS. While one file system manages three HDD

storage nodes with each consisting of two WD 1TB HDD

drives, another file system manages three SSD storage nodes

with each consisting of two Plextor 256GB SSD drives. Table 4

provides system parameters of the cluster. Both ADA and

PVFS employ a hybrid storage systemwith three SSD storage

nodes and three HDD storage nodes. Experimental results

from PVFS are taken as the control groups.

RawData Retrieval Time: Fig. 9a presents comparisons

in raw data retrieval time between PVFS and ADA. In this

case, ADA only uses the underlying SSD storage nodes to

transfer data, which is only 40% of a raw dataset. One can

observe from Fig. 9a that as the number of frames increases

the retrieval time (i.e., read time) of two ADA scenarios (i.e.,

D-ADA (all) and D-ADA (protein)) stay in between the best

and the worst cases. ADA performs more than 2x better than

PVFS (i.e., D-ADA (all) vs. D-PVFS) due to the better SSD read

performance. D-ADA (protein) performs similarly to C-PVFS
for the same reason discussed in Section 4.1.

Data Processing Turnaround Time: One can observe

from Fig. 9b that the two scenarios of PVFS take a much

longer data processing turnaround time as the number of

frames increases. For example, when the number of frames

is 6,256 the data processing turnaround time of D-PVFS is

9x of that of D-ADA(protein). Based on the trend shown

in Fig. 9b, one can safely predict that the data processing

turnaround time gap between compressed data (i.e., C-PVFS)

and decompressed data (i.e., all rest three scenarios) will

become wider as the number of frame numbers grows.

Memory Usage: Comparisons between PVFS and ADA

in memory usage are presented in Fig. 9c. The overall trend

shown in Fig. 9c is same as that of Fig. 7c. The reason is that

in both scenarios the same groups of data are retrieved from

storage to memory. The results shown in Fig. 7c and Fig. 9c

confirm that D-ADA(protein) can noticeably save memory

space for both a single server and a cluster.

4.3 Evaluation on a Fat-Node Server
We frequently heard an argument from domain scientists

that the problem that we are addressing could be solved by

employing a computing platform with larger memories. To

verify whether this argument is true, and more importantly,

whether ADA can effectively delay the time point when

VMD runs out of memory, we evaluate an existing file system

called XFS and ADA on a fat-node server with 1TB memory.

Table 5 summaries the specifications of the fat-node server.

Note that the server equips a RAID-50 HDD array, which

guarantees a competitive I/O performance. Table 6 provides

the details of data used in the experiments. In addition to the

7

Table 4. System Parameters

File Systems Spec. Disk Systems Spec.

CPU Intel®Xeon®CPU E5-2603 v4 @1.70GHz Disk Type HDD SSD

Operating System CentOS 6.10 w/ 2.6.32-754 kernel Brand Western Digital Plextor

File System PVFS (OrangeFS 2.8.5) Capacity 1TB 256GB

Node Quantity 9 Device Quantity 6 6

Node Arrangement

compute node *3

HDD node *3, SSD node *3

Data Transfer Rate 126MB/s (MAX)

Read: 3000MB/s (PEAK)

Write: 1000MB/s (PEAK)

Average Power

per Node

400W Port Type SATA PCI-e

Figure 9. (a) Raw data retrieval time; (b) data processing turnaround time; (c) memory usage.

Table 5. Parameters of Fat-Node Server

CPU

Intel(R) Xeon E7-4820v3 @1.90GHz

40 cores (4 sockets), 2 threads per core

Main Memory DDR-4 1,007GB

Operating System CentOS 7.3 w/ 3.10 kernel

File System XFS

Disk Array WD HDD 1TB *10, RAID 50

three major metrics, energy consumption is also measured

in this group of experiments.

Table 6. Data Size Comparisons (XFS vs. ADA)

Number of

Frames

Loaded Data (GB) Raw Data

(GB)XFS

(Compressed)

ADA

(De-compressed, protein)

62,560 10 13.9 32.7

187,680 30 41.6 98.0

312,800 50 69.3 163.3

437,920 70 97.0 228.6

625,600 100 138.6 326.6

938,400 150 207.9 489.9

1,251,200 200 277.2 653.2

1,564,000 250 346.5 816.5

1,876,800 300 415.8 979.8

2,502,400 400 554.4 1,306.4

3,440,800 550 762.3 1,796.3

4,379,200 700 970.2 2,286.2

5,004,800 800 1,108.8 2,612.8

RawData Retrieval Time and Data Processing Turn-
around Time: Fig. 10a and Fig. 10b present a similar trend

as that shown in Fig. 9a and Fig. 9b. The time difference

between Fig. 10a and Fig. 10b is the time for data decom-

pression and locating active data. One can see that as file

size keeps growing the raw data retrieval time becomes in-

creasingly insignificant in data processing turnaround time.

The implication is that faster storage devices can provide a

very limited contribution towards shrinking the data pro-

cessing turnaround time. For example, it takes VMD around

400 minutes to retrieve and render 1,564,000 frames on the

XFS system while the raw data retrieval time only weights

less than 10% of the data processing turnaround time. How

to quickly obtain the active data becomes a dominant fac-

tor in terms of improving data analysis efficiency in VMD.

Besides, both XFS and ADA (all) are killed by the system

due to memory shortage (see Fig. 10a and Fig. 10b) when

VMD is trying to render 1,876,800 frames, which require 300

GB memory for compressed data and 979.8 GB memory for

raw data. However, since ADA (protein) only needs to re-

trieve the protein data instead of the entire raw dataset from

storage to memory, it will be aborted due to run-of-memory

when VMD tries to render 5,004,800 frames, which contain

more than 2x protein graphs.

Memory Usage: Fig. 10c presents comparisons of mem-

ory usage between XFS and ADA. One can see that the mem-

ory usage trend shown in Fig. 10c confirms our analysis in

last paragraph that ADA can load more than 2x frames with

the same memory capacity. Note that when the number of

frames exceeds 1,876,800, only ADA (protein) still survives

as both XFS and ADA(all) have been killed due to memory

shortage (see Fig. 10c).

Energy Consumption:We use a power distribution unit

that equips a Modbus-enabled power monitor to collect real-

world server energy consumption for all experiments in this

section. Fig. 10d presents the fat-node server’s energy con-

sumption within the data processing turnaround time win-

dow for each VMD process. Note that we physically isolate

8

62,
560

312
,80

0
625

,60
0

1,2
51,

200

1,8
76,

800

3,4
40,

800

5,0
04,

800

Number of frames
(a)

0

30

60

90

120

150

180
Re

ad
 Ti

me
 (m

in) out-of-memoryout-of-memoryout-of-memory
XFS
ADA(all)
ADA(protein)

62,
560

312
,80

0
625

,60
0

1,2
51,

200

1,8
76,

800

3,4
40,

800

5,0
04,

800

Number of frames
(b)

0

100

200

300

400

500

600

To
tal

 Ti
me

 (m
in) out-of-memoryout-of-memoryout-of-memory

XFS
ADA(all)
ADA(protein)

62,
560

312
,80

0
625

,60
0

1,2
51,

200

1,8
76,

800

3,4
40,

800

5,0
04,

800

Number of frames
(c)

0

200

400

600

800

1,000

To
tal

 M
em

ory
 Us

ag
e (
GB

)

XFS
ADA(all)
ADA(protein)

62,
560

312
,80

0
625

,60
0

1,2
51,

200

1,8
76,

800

3,4
40,

800

5,0
04,

800

Number of frames
(d)

0

2,500

5,000

7,500

10,000

12,500

En
erg

y C
on

sum
pti

on
 (k

J) XFS
ADA(all)
ADA(protein)

Figure 10. (a) Raw data retrieval time; (b) data processing turnaround time; (c) memory usage; (d) energy consumption.

the server during our experiments so that energy consump-

tion values presented in Fig. 10d reflect the total energy

consumed by the server for each VMD process. One can

observe that XFS consumes more then 3x energy compared

to ADA. Take the frame number 1,876,800 as an example, the

server consumes more than 12,500 kilojoules energy if the

data is organized by the XFS file system. This value drops to

less than 5,000 kilojoules if ADA is employed. The value will

be even less (i.e., 2,200 kilojoules) if ADA provides protein

data only. This is a significant retrenchment in electricity

bills if ADA is applied to a computing center.

5 Related Work
Persistent Storage Systems:NVM-based storage is quickly

becoming a necessary component of future systems, driven

by the projections of very limited DRAM main memory per

node and plateauing I/O bandwidth [12]. Dulloor et al. imple-

mented PMFS to enable low-overhead I/O access [6]. Kannan

et al. presented pVM to exploit the capacity and storage ad-

vantages of NVM devices [23]. Xue et al. proposed AMF to

enlarge address spaces without additional application modi-

fication [29]. Wang et al. designed an ephemeral burst buffer

file system to support scalable and efficient aggregation of

I/O bandwidth from NVM devices [26].

Middleware Layer: Studies have explored data staging

and caching to buffer data temporarily for performance op-

timizations of data access in a near future [24]. Xu et al.
proposed a large-scale object-based active storage platform

for data analytics in IoT [28]. Xie et al. provided an active

storage framework for an object-based storage platform to

run data-intensive applications locally [27]. Sim et al. [19]
presented TagIt that moves the procedure of generatingmeta-

data to storage nodes. Zheng et al. [32] presented a method

that uses compute nodes’ idle resources to analyze and index

massive data generated by scientific APP in an in-situ way.

Computer Optimization for VMD: To analyze molec-

ular dynamics, VMD is a commonly used tool for visualiza-

tion. Stone et al. discusses the implementation of Embedded-

system Graphics Library (EGL) support in VMD and out-

lines the benefits of the EGL approach for parallel render-

ing [21]. Decherchi et al. proposed NanoShaper that specifi-

cally aims at constructing and analyzing the molecular sur-

face of nanoscopic systems [5]. Hilderbrand et al. argued
the interactive visualization of MD trajectories will achieve

better understanding, reliability, and re-usability of MD sim-

ulations [9].

6 Conclusions
In this paper, we identified a data processing challenge faced

by many molecular dynamics applications for visualization

and analysis. To solve it, we developed a prototype of a light-

weight file systemmiddleware called ADA dedicated to VMD,

which is then integrated into a cluster and a fat-node server.

Further, we applied ADA to optimize data visualization for an

MD application named GPCR, which employs VMD to visual-

ize protein structures. Our experimental results demonstrate

that ADA can noticeably improve performance, memory us-

age, and energy consumption. Besides, it scales well when

memory space is enlarged to 1 TB. In order to extend ADA to

other computational biology applications, or more broadly,

to other data-intensive applications, we plan to develop a

dynamic data categorizing and labeling interface through

which a user can describe the structure of his raw data in a

configuration file.

References
[1] 2017. FlameGraph Visualization Tool. http://www.brendangregg.com/

FlameGraphs/cpuflamegraphs.html.
[2] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul

Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. 2009.

PLFS: A Checkpoint Filesystem for Parallel Applications. In Proceed-
ings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC ’09). ACM, New York, NY, USA, Article 21,

12 pages. https://doi.org/10.1145/1654059.1654081
[3] Charles E Cook, Mary T Bergman, Guy Cochrane, Rolf Ap-

weiler, and Ewan Birney. 2017. The European Bioinformat-

ics Institute in 2017: data coordination and integration. Nu-
cleic Acids Research 46, D1 (11 2017), D21–D29. https://
doi.org/10.1093/nar/gkx1154 arXiv:http://oup.prod.sis.lan/nar/article-
pdf/46/D1/D21/23162477/gkx1154.pdf

[4] Charles E Cook, Rodrigo Lopez, Oana Stroe, Guy Cochrane, Cath

Brooksbank, Ewan Birney, and Rolf Apweiler. 2018. The Euro-

pean Bioinformatics Institute in 2018: tools, infrastructure and train-

ing. Nucleic Acids Research 47, D1 (11 2018), D15–D22. https://
doi.org/10.1093/nar/gky1124 arXiv:http://oup.prod.sis.lan/nar/article-
pdf/47/D1/D15/27437461/gky1124.pdf

[5] Sergio Decherchi, Andrea Spitaleri, John Stone, and Walter Rocchia.

2018. NanoShaper–VMD interface: computing and visualizing surfaces,

pockets and channels in molecular systems. Bioinformatics 35, 7 (08
2018), 1241–1243.

[6] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System

9

http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://doi.org/10.1145/1654059.1654081
https://doi.org/10.1093/nar/gkx1154
https://doi.org/10.1093/nar/gkx1154
http://arxiv.org/abs/http://oup.prod.sis.lan/nar/article-pdf/46/D1/D21/23162477/gkx1154.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/nar/article-pdf/46/D1/D21/23162477/gkx1154.pdf
https://doi.org/10.1093/nar/gky1124
https://doi.org/10.1093/nar/gky1124
http://arxiv.org/abs/http://oup.prod.sis.lan/nar/article-pdf/47/D1/D15/27437461/gky1124.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/nar/article-pdf/47/D1/D15/27437461/gky1124.pdf

software for persistent memory. Proc. Ninth Eur. Conf. Comput. Syst. -
EuroSys ’14 (2014), 1–15. https://doi.org/10.1145/2592798.2592814

[7] Devarshi Ghoshal and Lavanya Ramakrishnan. 2017. MaDaTS: Man-

aging Data on Tiered Storage for Scientific Workflows. In Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’17). ACM, New York, NY, USA, 41–52.

https://doi.org/10.1145/3078597.3078611
[8] Ibrahim F. Haddad. 2000. PVFS: A Parallel Virtual File System for

Linux Clusters. Linux J. 2000, 80es, Article 5 (Nov. 2000).
[9] Peter W. Hildebrand, Alexander S. Rose, and Johanna K.S. Tiemann.

2019. Bringing Molecular Dynamics Simulation Data into View. Trends
in Biochemical Sciences (2019). https://doi.org/10.1016/j.tibs.2019.06.
004

[10] Tian Hua, Kiran Vemuri, Mengchen Pu, Lu Qu, Gye Won Han, Yiran

Wu, Suwen Zhao, Wenqing Shui, Shanshan Li, Anisha Korde, Robert B.

Laprairie, Edward L. Stahl, Jo Hao Ho, Nikolai Zvonok, Han Zhou,

Irina Kufareva, Beili Wu, Qiang Zhao, Michael A. Hanson, Laura M.

Bohn, Alexandros Makriyannis, Raymond C. Stevens, and Zhijie Liu.

2016. Crystal Structure of the Human Cannabinoid Receptor CB1. Cell
167, 3 (2016), 750–762.e14. https://doi.org/10.1016/j.cell.2016.10.004

[11] William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD:

Visual molecular dynamics. Journal of Molecular Graphics 14, 1 (1996),
33 – 38. https://doi.org/10.1016/0263-7855(96)00018-5

[12] Jungwon Kim, Kittisak Sajjapongse, Seyong Lee, and Jeffery S. Vetter.

2017. Design and Implementation of Papyrus: Parallel Aggregate

Persistent Storage. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1151–1162. https://doi.org/10.1109/
IPDPS.2017.72

[13] Anton Kokalj. 2003. Computer graphics and graphical user interfaces

as tools in simulations of matter at the atomic scale. Computational
Materials Science 28, 2 (2003), 155 – 168. https://doi.org/10.1016/
S0927-0256(03)00104-6 Proceedings of the Symposium on Software

Development for Process and Materials Design.

[14] G. Kresse and J. Hafner. 1993. Ab initio molecular dynamics for liquid

metals. Phys. Rev. B 47 (Jan 1993), 558–561. Issue 1. https://doi.org/10.
1103/PhysRevB.47.558

[15] Xi Lin, Mingyue Li, Niandong Wang, Yiran Wu, Zhipu Luo, Shimeng

Guo, Gye-Won Han, Shaobai Li, Yang Yue, Xiaohu Wei, Xin Xie, Yong

Chen, Suwen Zhao, Jian Wu, Ming Lei, and Fei Xu. 2020. Structural

basis of ligand recognition and self-activation of orphan GPR52. Nature
579, 7797 (2020). https://doi.org/10.1038/s41586-020-2019-0

[16] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincy Koziol, John Bent,

and Eric Barton. 2016. DAOS and Friends: A Proposal for an Exascale

Storage System. In SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis. 585–596. https://doi.
org/10.1109/SC.2016.49

[17] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad

Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel,

Laxmikant Kalé, and Klaus Schulten. 2005. Scalable molecular dy-

namics with NAMD. Journal of Computational Chemistry 26, 16 (2005),

1781–1802. https://doi.org/10.1002/jcc.20289
[18] S. Plimpton. 1995. Fast Parallel Algorithms for Short-Range Molecular

Dynamics. J Comp Phys 117 (1995), 1–19.
[19] Hyogi Sim, Youngjae Kim, Sudharshan S. Vazhkudai, Geoffroy R. Vallée,

Seung-Hwan Lim, and Ali R. Butt. 2017. Tagit: An Integrated Indexing

and Search Service for File Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’17). ACM, New York, NY, USA, Article 5, 12 pages. https:
//doi.org/10.1145/3126908.3126929

[20] Gaojie Song, Dehua Yang, YuxiaWang, Chris de Graaf, Qingtong Zhou,

Shanshan Jiang, Kaiwen Liu, Xiaoqing Cai, Antao Dai, Guangyao Lin,

Dongsheng Liu, Fan Wu, Yiran Wu, Suwen Zhao, Li Ye, Gye Won Han,

Jesper Lau, Beili Wu, Michael A. Hanson, Zhi-Jie Liu, Ming-Wei Wang,

and RaymondC. Stevens. 2017. HumanGLP-1 receptor transmembrane

domain structure in complex with allosteric modulators. Nature 546,
7657 (2017), 312–315. https://doi.org/10.1038/nature22378

[21] J. E. Stone, P. Messmer, R. Sisneros, and K. Schulten. 2016. High

Performance Molecular Visualization: In-Situ and Parallel Rendering

with EGL. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1014–1023. https://doi.org/10.1109/
IPDPSW.2016.127

[22] David Strugatsky, Reginald McNulty, Keith Munson, Chiung-Kuang

Chen, S Michael Soltis, George Sachs, and Hartmut Luecke. 2013. Struc-

ture of the Proton-Gated Urea Channel From the Gastric Pathogen

Helicobacter Pylori. Nature 493, 7431 (2013). https://doi.org/10.1038/
nature11684

[23] Kannan Sudarsun, Gavrilovska Ada, and Schwan Karsten. 2016. pVM:

Persistent Virtual Memory for Efficient Capacity Scaling and Object

Storage. In Proceedings of the Eleventh European Conference on Com-
puter Systems (EuroSys ’16). ACM, New York, NY, USA, Article 13,

16 pages. https://doi.org/10.1145/2901318.2901325
[24] Yuan Tian, Scott Klasky, Weikuan Yu, Hasan Abbasi, Bin Wang, Nor-

bert Podhorszki, Ray Grout, and Matthew Wolf. 2012. SMART-IO:

SysteM-AwaRe Two-Level Data Organization for Efficient Scientific

Analytics. In 2012 IEEE 20th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems.
181–188. https://doi.org/10.1109/MASCOTS.2012.30

[25] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E.

Mark, and Herman J. C. Berendsen. 2005. GROMACS: Fast, flexible,

and free. Journal of Computational Chemistry 26, 16 (2005), 1701–1718.

[26] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan

Yu. 2017. An Ephemeral Burst-Buffer File System for Scientific Appli-

cations. Int. Conf. High Perform. Comput. Networking, Storage Anal. SC
(2017), 807–818. https://doi.org/10.1109/SC.2016.68

[27] Yulai Xie, Dan Feng, Yan Li, and Darrell D.E. Long. 2016. Oasis:

An active storage framework for object storage platform. Future
Generation Computer Systems 56, Supplement C (2016), 746 – 758.

https://doi.org/10.1016/j.future.2015.08.011
[28] Quanqing Xu, Khin Mi Aung, Yongqing Zhu, and Khai Leong Yong.

2016. Building a large-scale object-based active storage platform

for data analytics in the internet of things. The Journal of Super-
computing 72, 7 (01 Jul 2016), 2796–2814. https://doi.org/10.1007/
s11227-016-1621-2

[29] D. Xue, C. Li, L. Huang, C. Wu, and T. Li. 2018. Adaptive Memory

Fusion: Towards Transparent, Agile Integration of Persistent Memory.

In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 324–335. https://doi.org/10.1109/HPCA.2018.
00036

[30] Shifan Yang, Yiran Wu, Ting-Hai Xu, Parker W. de Waal, Yuanzheng

He, Mengchen Pu, Yuxiang Chen, Zachary J. DeBruine, Bingjie Zhang,

Saheem A. Zaidi, Petr Popov, Yu Guo, Gye Won Han, Yang Lu, Kelly

Suino-Powell, Shaowei Dong, Kaleeckal G. Harikumar, Laurence J.

Miller, Vsevolod Katritch, H. Eric Xu, Wenqing Shui, Raymond C.

Stevens, Karsten Melcher, Suwen Zhao, and Fei Xu. 2018. Crystal

structure of the Frizzled 4 receptor in a ligand-free state. Nature 560,
7720 (2018). https://doi.org/10.1038/s41586-020-2019-0

[31] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui

Zhang. 2015. In-Memory Big Data Management and Processing: A

Survey. IEEE Transactions on Knowledge and Data Engineering 27, 7

(July 2015), 1920–1948. https://doi.org/10.1109/TKDE.2015.2427795
[32] Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger,

George Amvrosiadis, Garth A. Gibson, Bradley W. Settlemyer, Gary

Grider, and Fan Guo. 2018. Scaling Embedded In-situ Indexing with

deltaFS. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis (SC ’18). Piscat-
away, NJ, USA, Article 3, 15 pages.

10

https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/3078597.3078611
https://doi.org/10.1016/j.tibs.2019.06.004
https://doi.org/10.1016/j.tibs.2019.06.004
https://doi.org/10.1016/j.cell.2016.10.004
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1109/IPDPS.2017.72
https://doi.org/10.1109/IPDPS.2017.72
https://doi.org/10.1016/S0927-0256(03)00104-6
https://doi.org/10.1016/S0927-0256(03)00104-6
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1038/s41586-020-2019-0
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1145/3126908.3126929
https://doi.org/10.1145/3126908.3126929
https://doi.org/10.1038/nature22378
https://doi.org/10.1109/IPDPSW.2016.127
https://doi.org/10.1109/IPDPSW.2016.127
https://doi.org/10.1038/nature11684
https://doi.org/10.1038/nature11684
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1109/MASCOTS.2012.30
https://doi.org/10.1109/SC.2016.68
https://doi.org/10.1016/j.future.2015.08.011
https://doi.org/10.1007/s11227-016-1621-2
https://doi.org/10.1007/s11227-016-1621-2
https://doi.org/10.1109/HPCA.2018.00036
https://doi.org/10.1109/HPCA.2018.00036
https://doi.org/10.1038/s41586-020-2019-0
https://doi.org/10.1109/TKDE.2015.2427795

	Abstract
	1 Introduction
	2 Background
	2.1 VMD in the GPCR MD Application
	2.2 VMD Data Processing Workflow

	3 Design and Implementation of ADA
	3.1 Architecture of ADA
	3.2 Data Pre-Processor
	3.3 I/O Determinator
	3.4 Implementation of ADA

	4 Evaluation of ADA
	4.1 Evaluation on an SSD Server
	4.2 Evaluation on a Small Cluster
	4.3 Evaluation on a Fat-Node Server

	5 Related Work
	6 Conclusions
	References

