
SRVoice: A Robust Sparse Representation-based
Liveness Detection System

Jiacheng Shang†, Si Chen‡, and Jie Wu†
†Center for Network Computing, Temple University, Philadelphia, PA 19121

‡Computer Science Department, West Chester University of Pennsylvania, West Chester, PA 19383
Email: {jiacheng.shang, jiewu}@temple.edu, schen@wcupa.edu

Abstract—voiceprint-based authentication is fast becoming the
everyday norm since it is much easier to use and provides
better security. However, current voiceprint-based authentication
systems are vulnerable to various replay attacks. To tackle
the spoofing attacks, we propose a new system that leverages
the structural differences between human vocal system and
loudspeakers and use the unique vibration pattern of both human
vocal cord and throat as a key differentiating factor for liveness
detection. Specially, we model the relationship between voices
collected by two microphones of a smartphone of each live
speaker using sparse representation. Compared with existing
systems, our solution does not assume any prior knowledge of
the attack method and is easy to operate. Moreover, our solution
leverages the audio signals within the vocal frequency range
and is robust to jamming attacks using high-frequency audio.
Experimental results show that our system can achieve accurate
liveness detection for a 6-digit passphrase with a mean true
acceptance rate of 99.04% and true rejection rate of 100%.

Index Terms—Voice authentication; Liveness detection; mobile
computing.

I. INTRODUCTION

Voiceprint-based authentication through technology is fast
becoming the everyday norm. Compared with password or
pattern-based authentication systems, voiceprint-based authen-
tication systems are much easier to use and provides bet-
ter security. Thanks to the powerful hardware provided by
current smartphones and more accurate speaker identifica-
tion techniques, Many voiceprint-based authentication systems
have been deployed on smartphones. For example, by using
“Voiceprint” [18] designed by WeChat, users can log into their
accounts by speaking a fixed passphrase. Besides, solutions
provide by SayPay [12] can fuse mobile payments by lever-
aging users’ voice. VoiceIt and Microsoft have also published
different APIs that enable developers to design voiceprint-
based authentication solutions. Basically, those systems and
APIs ask users to speak a passphrase from the given list of
phrases and record several audio samples to register user’s
voice. If the speaker claims to be of a certain identity, the
recorded voices will be used to verify this claim.

However, voiceprint-based authentication systems are vul-
nerable to various replay attacks. Since voices can be recorded,
simulated or even imitated, an attacker can easily steal a
person’s voice with the availability of high quality and low-
cost handy recorders and other recording devices (e.g., smart-
phones). The leakage of victims’ voices cause lots of security

issues, which pose a severe threat to voiceprint-based authenti-
cation systems [9, 13, 19]. For instance, a strong attacker could
impersonate the victim by performing state-of-the-art speech
synthesis techniques as long as the attacker acquires enough
victim’s voice. The synthetic voices are then used to spoof the
voiceprint-based authentication systems. Our experiments also
show that the attacker can easily spoof WeChat Voiceprint by
recording and replaying victim’s voice using the speaker of
a smartphone. Since voice is considered as unique for each
person and a basis for personal authentication [4], victim’s
safety, reputation, and property are under severe threat if we
cannot resist these attacks.

Traditionally, voiceprint-based authentication systems de-
fend against voice-spoofing attack by implementing an auto-
matic speaker verification (ASV) system. This idea has been
adopted by many popular application, such as WeChat. The
ASV systems compare the extracted features of incoming
voices with those that are from the claimed speaker and
already registered in the database. However, spoofing attacks
against ASV systems are also be improved greatly [6, 9, 19].
An attacker can perfectly impersonate the victim voice by
replaying victims’ voices to the voiceprint-based authentica-
tion systems. Moreover, current ASV systems need to have
prior knowledge of specific voice spoofing techniques used
by the attacker [5], which greatly limited their abilities against
various spoofing attacks. To address this issue, many liveness
detection systems are proposed by studying the differences
between human vocal system and loudspeakers on how they
produce voices. VoiceLive [22] can fight replay attacks by
capturing time-difference-of-arrival (TDoA) changes in a se-
quence of phoneme sounds to the two microphones of the
phone. However, it needs the same relative location of user’s
mouth during authentication, which is hard to satisfy in
practice. A liveness detection system is proposed in [21] and
can detect a live user by leveraging the unique articulatory
gesture of the user when speaking a passphrase. However, it
cannot work if the attacker performs a jamming attack using
high-frequency audio.

To address limitations of existing solutions, we propose a
new liveness detection system for voiceprint-based authenti-
cation systems to fight against replay attacks. Our solutions
are designed based on the following fact: The human vocal
systems and loudspeakers differ a lot for their structures and
how they produce voices. Compared with existing systems,
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Fig. 1. The differences between human vocal system and loudspeaker.

our solution is ready to use and can be seamlessly deployed
on off-the-shelf smartphones and does not assume any prior
knowledge of the attacking method and is easy to operate.
Moreover, our solution leverages the audio signals within the
vocal frequency range and is robust to jamming attacks using
high-frequency audio. In order to fight replay attacks, we
leverage the unique vibration of vocal cords while a person
is speaking a passphrase to a voiceprint-based authentication
system. The human voice can be divided into voiced and
unvoiced parts. The voiced part is produced by the vibration
of vocal cords, while the unvoiced part is produced by the
articulators. By attaching a mircrophone to the throat, we can
capture the voiced part produced mainly by the vocal cords.
Moreover, there is a relationship between the voice captured
at the mouth and the throat, and this relationship is unique for
different people and different words. Different from the human
vocal system, the vocal structure of a loudspeaker has its sound
coming from the same place, which means that we cannot
observe the relationship if the voice is from a loudspeaker.

We summarize our contributions as follows:

• Our solution leverages existing sensors on most smart-
phones and can be easily implemented on existing smart-
phones as a software or plug-in.

• We model the relationship between voices collected by
two microphones and prove that the relationship is unique
for each word and each person.

• We develop a prototype and conduct comprehensive
evaluations. Experimental results show that our system
can achieve accurate liveness detection for a 6-digit
passphrase with a mean true acceptance rate of 99.04%
and true rejection rate of 100%.

II. PRELIMINARIES

In this section, we will first introduce structures of the
human vocal systems and loudspeakers. Based on the analysis,
we will discuss the key insights that inspire us proposing new
solutions and the use case of our system.

A. Background knowledge

In the human vocal system, the vocal cords are the primary
sound source to produce voiced phoneme. Besides voiced
phoneme, there exist other sound production mechanisms
produced by the same general area of the body, involving the
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(d) Prime Microphone & loudspeaker
Fig. 2. The spectra of audio samples collected from two microphones when
the speaker is a live person and a loudspeaker, respectively.

production of unvoiced consonants, clicks, whistling and whis-
pering, as shown in Fig.1(a). The mechanism for producing
the human voice can generally be subdivided into three parts;
the lungs, the vocal folds, and the articulators. The lungs first
produce adequate airflows and air pressure to vibrate vocal
folds. The vocal cords vibrate and chop up the airflow from
the lungs into audible pulses that form the laryngeal sound
source. Then, the length and tension of the vocal cords are
adjusted to produce ‘fine-tune’ pitch and tone. The articulators
consisting of tongue, palate, cheek, lips further filter the sound
generated from the larynx to strengthen it or weaken it. This
suggests to us that the audio signals collected near the throat
and the mouth may be different, and this difference can only
be produced by the human speaker.

Replay attackers use one or more high-quality loudspeakers
to replay victim’s voices to the authentication system. As
shown in Fig. 1(b), the loudspeakers use a voice coil to
translate an electrical signal into an audible sound. When there
is an electric current flows through the voice coil, an magnetic
field is created around it. When electrical pulses pass through
the coil, the direction of the magnetic field is also frequently
changed. With a rapidly changing magnetic filed, the coil is
attracted to and repelled under the influence the permanent
magnet. As a result, the cone attached to the coil will vibrate
back and forth, pumping sound waves into the surrounding
air. If we put the smartphone near to the loudspeaker, the
two microphones of a smartphone around the loudspeaker will
capture very similar audio signals.

B. Key insights

In order to resist two types of attacks we considered, we
need to leverage the structural differences between human
vocal systems and loudspeakers discussed in Section II-A. We
observe that human voice can be divided into the voiced and
unvoiced parts. In the voiced part, the vocal cord keeps vi-
brating and generates low-frequency audio signals around the
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human throat. The vocal cord stops vibrating during unvoiced
part, while the mouth vibrates to generate different sounds.
We collect voice signals when the user says “Six” at two
locations (the throat and the mouth) using two microphones,
and the results are illustrated in Fig. 2. It is clear that the
audio signal collected near the mouth reserves the information
of the unvoiced parts, but the majority of this information
is lost in the audio signal collected near the human throat.
Also, both audio signals reserve the information of voiced
part, while the audio signal collected near throat only contains
the information at low frequency. Different from human vocal
systems, the cone keeps vibrating for both voiced and unvoiced
parts in order to generate sounds. We use a loudspeaker to
imitate human vocal system and collect the audio signals in the
same way. Fig. 2 also shows the spectrum of the same audio
signal played by a loudspeaker and captured by the prime
microphone. We can observe that the spectrum shows much
more information of unvoiced parts than that collected from
the voice of a throat.

C. Use case

To defend users from spoofing attacks using our system,
the user needs to put the bottom side of the smartphone
on the throat while using the normal voice authentication
systems, as shown in Fig. 3. To capture the voices from at the
throat and the mouth, we leverage two microphones equipped
with current smartphones. Specially, the prime microphone
is used to capture the low-frequency voice caused only by
the human throat, and the front microphone is used to record
human voice on the whole frequency band. Two audio signals
are well synchronized by smartphones’ operating systems.
Moreover, he distance between the human throat and the prime
microphone must be zero, and the distance between human lips
and the front microphone is about 10cm. Since the distance is
pretty short, the time delay between two audio signals is less
than 14 samples when the sampling rate is 44,100 samples per
second. During authentication, the user speaks a passphrase to
the smartphone as usual while keeping the bottom side of the
smartphone on the throat.

III. ATTACK MODEL

The attackers in our system aim to attack the biometric iden-
tification of the normal user. In our system, we consider three
replay attacks. In each attack, an attacker tries to steal victim’s
voices and replay them to a voiceprint-based authentication
systems. In all attack models, the attackers cannot steal the

voice at victim’s throat. Also, the attackers can only alter the
input of our liveness detection system and cannot get/replace
the voice in any middle stage of the liveness detection.

Mimic attack. The mimic attacker tries to attack the
voiceprint-based authentication system by imitating victim’s
voice. In this attack model, the attacker can only physically
access victim’s smartphone but cannot record victim’s voice.

Replay attack. The replay attacker has all the abilities of
the mimic attacker and can get victim’s voice at the mouth
by all means. The replay attacker tries to fool the voiceprint-
based authentication system by replaying victim’s voice using
a loudspeaker.

Reconstruction attack. The replay attacker has all the
abilities of the replay attacker. Besides, the reconstruction
attacker knows all the details of our solutions and tries to
reconstruct the voice at victim’s throat based on the voice at
victim’s mouth. The reconstruction attacker can observe the
relationship of his/her own two audio samples and design a
low-pass filter to reconstruct the voice at the throat by selecting
various cut-off frequencies. Then, the attacker uses two loud-
speakers to fool the voiceprint-based authentication system.
One loudspeaker replays the voice at victim’s mouth to the
front microphone, and the other one replays the reconstructed
voice to the prime microphone.

IV. SYSTEM DESIGN

A. Challenges

In order to design a robust liveness detection system, several
challenges need to be addressed.

Representation of the relationship and differences be-
tween two voices. The first challenge is how to represent the
relationship between two voices collected from two micro-
phones for a live speaker in a proper way, so that we can
use the relationship as a pattern to distinguish between a live
speaker and a loudspeaker. One possible solution is to compute
a mapping function between the spectra of two audio signals
based on the following equation:

y = M ∗ x (1)

where x is the voice sample captured at the mouth, y is the
voice sample captured at the throat, and M is the mapping
function. However, the solution is not unique, and the optimal
solution is hard to be found in polynomial time. A new
scheme that requires fewer computation resources needs to be
proposed to describe the relationship and differences between
two voices. In our system, instead of computing x, we use
the differences between two voices in both time domain and
frequency domain to represent the relationship and difference.
Our experiments show that the differences between two voices
are very significant for a live speaker and a loudspeaker.

Uniqueness of the relationship between two voices.
Although we can leverage the difference between two voices
to distinguish a live speaker or an attacker with a loudspeaker,
the system is still under threat of strong attackers who try to
reconstruct the voice at victim’s throat. It is important to prove
that the uniqueness of the relationship for different people.
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Otherwise, the attacker can easily reconstruct victim’s voice
by leveraging the relationship existing in his/her own voices.
In this paper, we prove that the relationship is unique for each
person and each word based on our dataset.

Robust liveness detection under various noises. The
acoustic environment is dynamic in practice, which poses a
challenge to our liveness detection system. The dynamic noise
will alter the feature in an unpredictable way. To solve this
problem, we leverage a sparse representation-based classifica-
tion model that can achieve a great performance even when
the input includes noise.

B. System overview

The key idea underlying our liveness detection system is to
fully leverage the unique vibration of vocal cords while the
user is speaking. When a person utters a passphrase in the
way described in Section II-C, the primary microphone at the
bottom records the sound mainly produced by the vibration
of vocal cords, while the front microphone records the voice
coming from the mouth. These two voice collected from a
real person have hidden relationships, which can be used to
detect if the speaker is a human or a loudspeaker. We explore
the difference between two voice in both frequency and time
domain and prove that a unique pattern exists for each person
and each phoneme. The unique patterns of each person are
used to distinguish if the voice is from a loudspeaker or
another person.

Fig. 4 shows the pipeline of our system when a speaker
“Bob” speaks a 4-digit passphrase to our system. Each voice
is first segmented into non-overlapping words through Hidden
Markov Model (HMM). Then, we perform Short-Time Fourier
Transform (STFT) on the audio sample of each separated
word to get the energy distribution at both frequency domain
and time domain. A sparse representation-based classification
model is designed to determine if the two voices of each word
satisfy the relationship of the argued speaker already stored
in the dictionary. The final decision is made by involving the
liveness detection results of all four words in a weighted voting
game. If the voting result is the same as the argued speaker,
the speaker is regarded as passing the liveness detection.

C. Word segmentation and feature extraction

The two voices recorded by two microphones include two
parts: the passphrase and background noise. The passphrase
part contains abundant features of the speaker’s voice, while
the noise part only records the acoustic noise in the back-
ground. In our system, we only focus on the passphrase part
in order to reduce the influence of the acoustic noise in the
background. Since the audio sample recorded by the front
microphone reflects the real voice, we split each audio sample
into different words by performing HMM-based word segment
techniques [11] on the audio sample of the front microphone.

Also, we need to find features to establish the relationship
and differences between two voices collected from two micro-
phones to distinguish whether the voice is from a live speaker
or a loudspeaker. In order to capture features on both frequency
domain and time domain, we perform STFT on each word and
each audio sample with a window size of 46ms based on:

X(τ, ω) =

n=+∞∑
n=−∞

x[n]w[n− τ ]e−jωn (2)

where τ is the time axis, ω is the frequency axis, x[n] is the an
audio sample, w[n] is the window, and X(τ, ω) is a complex
function representing the phase and magnitude of the signal
over time and frequency. Then, the spectrogram of the complex
function X(τ, ω) is computed based on:

spectrogram{x[n]}(τ, ω) ≡ |X(τ, ω)|2 (3)

Different people have various speaking habits, which leads
to different speaking time. Also, even the same person can
speak the same passphrase in different amounts of time. To
eliminate the influence of different speaking time and involve
voices of different people in the same classification model, we
scale the spectra difference (the image) to the same size.

As we stated in the first challenge, it is hard to compute the
optimal M in polynomial time. Instead, we use the difference
between two spectra to represent the relationship. If a unique
M exists, the unique difference between two spectra should
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(d) The second sample of the user 2
Fig. 5. The spectra differences collected from two users when they speak
“Six” to our system.

also exist. For each word, we compute the difference between
two spectra as follows:

S = spectrogram{xfront[n]} − spectrogram{xprime[n]}
(4)

where xfront is the audio sample recorded by the front
microphone and xprime is the audio sample recorded by the
prime microphone.

D. Liveness detection for a single word

After obtaining the difference of spectra for each word, a
robust classification model needs to be designed to detect the
liveness of the speaker. Fig. 5 shows four spectra differences
collected from two users when they speak “Six” to our system.
We can see that the spectra differences produced by the same
user are pretty similar. Also, for Figs.5(a) and 5(c), the spectra
differences of different users are quite different from each
other. Ideally, the spectra difference should be unique for each
speaker and each word. A naive way is to treat every entry in
the spectra difference as a feature and use machine learning
techniques such as Support Vector Machine to recognize which
speaker the voice comes from. However, this will involve
many irrelevant features and overhead. Even if we try to select
good features using algorithms such as Principle Component
Analysis (PCA), we find that there is a lack of guidelines
to decide which feature to use. Recently, with the theory of
compressed sensing, the choice of features is no longer critical
as long as the dimension of the feature space is sufficiently
large, which is true in our system. Moreover, background
noise will introduce occlusions to the spectra. The errors only
disrupt a fraction of the spectrum but may break the pattern
and reduce system performance. Fortunately, the compressed
sensing-based classification model can effectively work even
if there exist sparse errors in the feature space.

We build our system based on Sparse Representation-based
classification model. There are k distinct object classes in the
training data, and each object class refers to a word spoken by
a distinct speaker. The ni given training samples, taken from
the ith class, are arranged as columns of a matrix Ai

Ai = [vi,1, vi,2, . . . , vi,ni
] ∈ Rm×ni (5)

where v ∈ Rm is a vector that is produced by stacking the
columns of computed spectra difference, and m is the number
of entries in spectra differences. Each column of Ai is the
training spectra difference.

Based on our experiment, we assume that the spectra
differences of the same word spoken by the same speaker
under different acoustic environments lie on a low-dimensional
subspace. As a result, a new sample y of the ith class can be
approximately expressed as:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

α ∈ R (6)

For any new spectra difference y, since we do not know
which class it belongs to, we define a new matrix A =
[A1, A2, . . . , Ak] for all training samples of all available
classes, and k is the number of classes we have in the training
dataset. The linear representation of y can be expressed as:

y = Ax0 ∈ Rm (7)

By computing x0, we can obtain the sparse represen-
tation of y in terms of dictionary A. Ideally, x0 =
[0, . . . , 0, αi,1vi,1, . . . , αi,ni

vi,ni
, 0, . . . , 0], so we can approx-

imately recover X0 by solving the following stable l1-
minimization problem:

x̂1 = arg min ||x||1 subject toAx = y (8)

If the dictionary A is large enough, the number of non-
zero coefficients in x0 should be very small, so this convex
optimization problem can be efficiently solved via second-
order cone programming. The sparsity of x0 can be satisfied
in our system since we only collect a few training samples
from the user and most training samples in A are from other
speakers. To recognize which speaker produces the voice, we
compute the estimation error E(y) for each class.

E(y) = mean(||y −A∆ix̂1||1) (9)

where ∆i(x1) is the vector that only contains coefficients
associated with the ith class. The new sample y is labeled
as the word spoken by a speaker whose estimation error is
minimal. As long as the label is different from the argued
speaker and argued word of the input voice, the spectra
difference y is considered coming from the attacker. Fig. 6
shows the estimation errors for 48 object classes, we can see
that the error of the ninth class is the lowest, so this testing
sample should be labeled as the ninth class, which is “Six” of
the first user.
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Fig. 6. The estimation errors for 48 classes.

E. Liveness detection for a passphrase

After getting the liveness detection results of each separate
word, we need to make a rule to combine these results and
produce the final decision. A good decision rule should make
sure to provide a high passing rate for a live speaker and a
low pass rate for a loudspeaker. A straightforward way is to
include classification results of all words of the passphrase
in a voting game where all players have the same weight.
However, we find that the liveness detection may fail on
detecting some live speakers for those words that do not
have unvoiced phoneme. If a passphrase contains many words
without unvoiced phoneme, the voting game may give a wrong
liveness detection result. To solve this problem, we assign
different weights to different words. In the voting game,
each player is a tuple < speaker, word, weight >. The
speaker and word are the recognition results for each spectra
difference. If the recognized word does not match the word
that the speaker said, the weight is 0. Otherwise, the weight
of each word is defined as follows:

Weight(w) = 1 + log(1+Nunvoiced(w)) (10)

where w is a word in the passphrase and Nunvoiced(w) is
the number of the unvoiced phonemes in word w. Here, we
use the logarithmic equation to measure the gain of unvoiced
phonemes, so that the word with multiple phonemes will have
more weights but will not dominate the voting process. A
speaker is recognized as a live speaker if and only if the voting
result is the same as the claimed identity.

V. EVALUATION

A. Experiment methodology

Experiment setup In order to evaluate the effectiveness of
our system, we build a prototype on two types of smartphones
with different sizes (LG Nexus 5 and MOTO Nexus 6).
Both of the two types of smartphones run on Android. The
smartphones are used to capture audio signals in two channels.
We design a simple graphical user interface (GUI) to help
users collect audio signals. The application starts capturing
user’s voice in two channels as soon as the user presses
the button and stops data collection immediately when the
user releases the button. After data collection on smartphones,
audio signals are sent to a local server for further validation.
The server runs on a MacBook Pro with 2.9GHz Intel Core
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i5 processor and 8GB 1867 MHz DDR3 memory. The data
is collected from 7 volunteers (3 males and 4 females) with
different accents.

Performance Metrics In our experiments, we use the
following performance metrics to evaluate the validation per-
formance of our system. True acceptance rate is defined as
the rate at which a user is correctly accepted by the system
and considered as a real person. True rejection rate is defined
as the rate at which an attacker is correctly rejected by the
system.

B. True acceptance rate for live speaker

A good liveness detection system should provide high
acceptance rate for a live speaker. To evaluate the system
performance on detecting live speakers, we ask each volunteer
to repeat speaking a 6-digit passphrase to our system. Five
samples among them are used to build the dictionary for
classification, and 45 samples are used as the testing data.
Fig. 7 shows the acceptance rate of a single word and a whole
passphrase for 7 volunteers. We can observe that our system
can provide a high acceptance rate of at least 93.3% for a 6-
digit passphrase. Also, our weighted voting scheme ensures the
high true acceptance of a passphrase even the true acceptance
rate of a single word is relatively low. For example, in some
rare cases,our system can only provide an acceptance rate
of 57% for each single word, while the acceptance rate is
improved to 93.3% for the whole passphrase. On average, our
system can provide a mean true acceptance rate of 99.04%.
With a longer and more diverse passphrase, our system is
expected to provide better robustness and performance.

C. True rejection rate for three types of attackers

The true rejection is another important performance metric
to evaluate the security of liveness detection systems. In
practice, we always would like to reject as many attackers as
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we can to secure the system. We collect 30 samples under
three types of attacks and evaluate the true rejection rate
under the same setting in Section V-B. Also, we compare the
performance of our system with that of WeChat Voiceprint
for the first two types of attacks. To evaluate the performance
under the replay attack, we use the speaker of a Nexus 5
smartphone to record and replay victim’s voice to the target
smartphone. From Fig. 8, it is clear that our system can
defend all three types of attacks with a high true rejection
rate of 100%, while WeChat Voiceprint cannot defend the
replay attack. The evaluation results show that our liveness
detection system can largely improve the security of voice-
based authentication system against replay attacks and does
not influence the user-experience of live speakers. Moreover,
our system cannot be fooled bya reconstruction attacker even
when the attackers know all implementation.

D. Performance under different acoustic environments

In practice, a user can use the voice biometrics-based
authentication system in various acoustic environments. A
good liveness detection system should provide high true ac-
ceptance in any acoustic environment as long as the voice
biometrics-based authentication system can work. To evaluate
the performance of our system performance under different
levels of noise, we use an Amazon Echo speaker to play
random kinds of music. In order to simulate different levels of
noise, we adjust the volume of Amazon Echo speaker. Under
each noise level, we ask a user to speak a passphrase for 20
times to each system. Fig. 9 shows the true acceptance rates
of our system and WeChat Voiceprint under three different
noise levels. We can observe that both our system and WeChat
Voiceprint can achieve near 100% true acceptance rate when
the noise level is about 60 and 70 dB, which means our system
will not influence the user experience even if the user is in
noisy scenarios such as on the streets. Even when the noise
level is raised to about 80 dB, our system can still provide a
higher true acceptance rate of 80% than WeChat Voiceprint.
These experimental results show that our liveness detection
system will not influence the original voice biometrics-based
authentication in various experiments.

E. Performance under hardware influences

In most cases, users will enroll the voice and use the
voice biometrics-based authentication system on the same
smartphone, but they may also update their smartphones or
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Fig. 10. True acceptance rates under hardware changes.
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Fig. 11. True acceptance rates for different words.

switch to another brand at any time, which will introduce
hardware changes and influence the system performance. To
study the influence introduced by different hardware on dif-
ferent smartphones, we ask a user to enroll his voice on two
different smartphones to build the dictionary. Then, we classify
the test samples collected on one smartphone using the training
samples on another smartphone, and the results are shown in
Fig. 10. We can observe that our system can provide almost
the same true acceptance rate on two smartphones for all 7
volunteers. Also, our system can provide 100% true rejection
rate for all users. Experimental results show that our system
can deal with hardware changes.

F. Performance for different words

Different words contain different numbers of voiced and
unvoiced phonemes. Also, the speaking time of different words
is also different. In our system, we only use numbers as words.
To evaluate our system performance for different numbers,
we collect 40 testing samples from each of 7 users, and the
results are shown in Fig .11. It is clear that our system can
provide high acceptance rate of at least 90% for all words.
We notice that the true acceptance rate of word “Four” is
lower than that of other words. This is because the speaking
habits of “Four” may change for some volunteers. Since our
dictionary only contains 5 samples of each word spoken by
each volunteer, the limited number of training samples cannot
reflect the habit change. This can be further improved by
involving more training samples in the dictionary.

VI. RELATED WORK

A. Voiceprint-based authentication applications and APIs

Since voiceprint-based authentication is efficient and
comfortable for users, many applications have integrated
voiceprint-based authentication into their system. For example,
by using “Voiceprint” [18] designed by WeChat, users can log



into their accounts by speaking a fixed passphrase. Besides,
SayPay [12] offers a solution that fuses mobile payments by
leveraging users’ voice.

B. Automatic Speaker Verification (ASV) System.

An automatic speaker verification system is identify
speaker’s identity based on speech sample submitted by a user
[15]. Recently, many ASV systems have been deployed on
smartphones and online commerces [3, 7, 10]. The problem
that ASV systems need to answer can be abstracted to a binary
classification problem where the user must be justified as either
a genuine speaker or as an imposter [8]. Existing ASV systems
can be divided into Text-independent ASV systems and Text-
dependent ASV systems. Text-independent ASV systems are
able to accept arbitrary utterances, i.e., different speaking
habit and languages, from speakers [2]. The text-dependent
ASV systems are widely adopted by most authentication
applications due to its higher recognition accuracy with fewer
required utterances.

C. Voice Spoofing Attack.

In voice spoofing attacks, an attacker aims to attack the
biometric identification of the user.These attacks can divide
into two categories: voice replay attack and voice synthesis
attack. In [16], it shows that an attacker can overcome text-
dependent ASV systems by concatenating speech samples
from multiple short voice segments of the target speaker. To
fight against simple but effective voice replay attacks, a few
research papers have been published [16, 17]. However, all
these countermeasure systems suffer high false acceptance rate
(FAR) compared to respective baselines. A voice synthesis
attack is designed in [1] can break ASV system by generating
artificial speech from text input. Various voice conversion
attacks are proposed in [14, 20] in which the attacker converts
the spectral and prosody features of his or her own speech and
makes it resembles to the victim’s speech.

VII. CONCLUSION

In this paper, we propose a new system that can detect
the liveness and the identity of the speaker. Specially, we
leverage the structural differences between human vocal sys-
tem and loudspeakers and use the unique vibration pattern
of both human vocal cord and throat as a key differentiating
factor. Compared with existing systems, our solution does
not assume any prior knowledge of the attacking method
and is easy to operate. Moreover, our solution leverages
the audio signals within the vocal frequency range and is
robust to jamming attacks using high-frequency audio. We
evaluate the performance of our system with 7 volunteers, and
experimental results show that our system can achieve accurate
liveness detection using a 6-digit passphrase with a mean true
acceptance rate of 99.04% and true rejection rate of 100%.
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