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6 Abstract—Augmented reality (AR) applications that overlay the perception of the real world with digitally generated information are

7 on the cusp of commercial viability. AR has appeared in several commercial platforms like Microsoft HoloLens and smartphones.

8 They extend the user experience beyond two dimensions and supplement the normal 3D world of a user. A typical location-based

9 multi-player AR application works through a three-step process, wherein the system collects sensory data from the real world, identifies

10 objects based on their context, and finally, renders information on top of senses of a user. However, because these AR applications

11 frequently exchange data with users, they have exposed new individual and public safety issues. In this paper, we develop ARSpy, a

12 user location tracking system solely based on network traffic information of the user, and we test it on location-based multi-player AR

13 applications. We demonstrate the effectiveness and efficiency of the proposed scheme via real-world experiments on 12 volunteers

14 and show that we could obtain the geolocation of any target with high accuracy. We also propose three mitigation methods to mitigate

15 these side channel attacks. Our results reveal a potential security threat in current location-based multi-player AR applications and

16 serve as a critical security reminder to a vast number of AR users.

17 Index Terms—Augmented reality, localization, attack

Ç

18 1 INTRODUCTION

19 AUGMENTED reality (AR) applications connect the physical
20 world and the cyber world by overlaying digitally gener-
21 ated information on the perception of the realworld. Common
22 AR applications use a marker, which is sufficient for AR proj-
23 ects where users can remain stationary, to trigger AR content.
24 Location-based AR applications, in contrast, heavily rely on
25 users’ physical locations. Typically, they use GPS (BLE bea-
26 cons for the indoor environment) and simultaneous localiza-
27 tion and mapping (SLAM) techniques to determine the
28 location of a user and to detect the orientation of a device. Uti-
29 lizing location information to enhance anARapplication helps
30 to create a more immersive experience by relying on physical
31 proximity to automatically trigger AR content. As the first
32 significant success in location-based AR, okemon Go [3] of
33 Niantic Lab, a smartphone game combing location-based real-
34 time tracking and AR, attracted more than 45 million daily
35 users within just a few days of its launch; it has been

36downloaded 800 million times since then. However, the
37potential of location-based AR lies far beyond smartphone
38games, and it is being applied more consequentially in both
39consumer and business-to-business settings. For example,
40Gatwick Airport has installed 2,000 indoor navigation bea-
41cons, which will enable AR path-finding at the airport [7].
42Moreover, many third-party AR services such as Wikitude
43and Motive.io, provide a full-featured software development
44kit (SDK) that allows developers to build location-based AR
45applications without concern for technical details like motion
46tracking, proximity calculation, or scale estimation. In fact,
47with increasing shifts to hands-free devices, such as head-
48mounted displays or smart glasses, location-based AR is
49becoming a new information-delivery paradigm.
50While the technology underlying AR applications is boom-
51ing, little thought has been given to how these systems should
52protect the privacy of users. The AR devices continuously
53receive input from the environment through video, audio,
54and other sensors, and the continuous network connectivity
55will expose new security and privacy issues, especially in sce-
56narios where AR users can also upload AR contents to the
57server (e.g., AR-based message board). Existing AR systems
58protect users’ geolocations by encrypting the two-way trans-
59mission between users’ devices and server using HyperText
60Transfer Protocol (HTTP) and HTTP Secure (HTTPS) proto-
61cols. Even if the attacker can capture the network packets in
62the middle of transmission, the geolocation of the user is
63regarded as safe if the attacker cannot decrypt the network
64packets. However, it is known that the attributes of encrypted
65traffic, often referred to as side-channel information, can leak
66some sensitive information about the communications. Such
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of67 side-channel information leaks have been studied by [44]

68 (secure shell), [48] (voice-over-IP), and [10] (web application).
69 Several existing studies conducted byvarious research groups
70 have shown anonymity issues in encrypted web traffic. It has
71 been shown that even when a user visits a web page through
72 HTTPS channel, that page can still be identified due to the dis-
73 tinct size of a page and corresponding resource objects (e.g.,
74 images) [10]. Despite the importance of this side-channel
75 threat in an encrypted channel, there is currently no study in
76 the AR application domain for understanding its gravity and
77 mitigation solutions.
78 In this work, we explore the security threat model of AR
79 devices and demonstrate a new side-channel threat caused
80 by location-based multi-player AR applications’ unique
81 combination of a high volume of real-time data, outsourced
82 geolocation processing, and open privilege of uploading AR
83 contents. We show that an adversary can covertly learn the
84 location of an AR device and track the user in real-time by
85 simply relying on monitoring the network throughput of
86 the device. Different from getting GPS information from the
87 device of the victim, the attacker can acquire network traffic
88 information without using any location-related permissions,
89 which means our attack methods are hard to be noticed by
90 the victim in system permission level. Our attack model is
91 proposed based on the following observations: 1) Location-
92 based multi-player AR applications interact with a cloud
93 database and cache AR contents when the victim is within a
94 certain distance from them. 2) Many Location-based multi-
95 player AR applications allow any user to upload or delete
96 their AR contents to the database, such as WallaMe [5] and
97 World Brush [6]. Therefore, as shown in Fig. 1, an attacker
98 can also use the AR applications to upload fake AR contents
99 of a specific size to the database in advance. Then, the

100 attacker can observe a unique network traffic pattern on the
101 AR device of the victim when the victim is close to that loca-
102 tion. By properly determining the size and location of each
103 AR content, the attacker can locate users and reconstruct the
104 trajectory of the victim with high accuracy. Based on two
105 observations, we propose a fake AR contents generation and
106 deployment strategy. A network throughput processing
107 method is also provided to extract the location information
108 of the victim from the raw network throughput. Extensive
109 experiments on our self-built AR application built on
110 Android platform, simulation testbed, and a real location-
111 based AR application show that our attack methods can
112 reveal the location of the victim with high accuracy. Three
113 mitigation solutions are also proposed to defend against this
114 side-channel attack.

115Our work makes the following contributions:

116� We show that the network traffic information of an
117location-based AR applications can reveal poten-
118tially private location information.
119� We propose strategies for generating and deploying
120fake AR contents in order to track the victim pre-
121cisely. Also, we discuss the processing schemes of
122raw throughput data and the algorithm for recon-
123structing the trajectory of the victim.
124� We implement our attack algorithms and build an
125automated user location tracking system. The real-
126world experiments on Android platform show that
127we could obtain the geolocation of any target with
128mean accuracy of at least 94.6 percent and perfectly
129reconstruct the trajectory of the victim with an accu-
130racy of 77.5 percent in a small area. Moreover, our
131attack algorithms can infer at least top two locations
132with high accuracy of 86 percent based on a city-
133scale simulation.
134� We discuss three potential mitigation methods to
135present this type of information leak in location-
136based AR applications and point out directions for a
137continuation of this work.

1382 PRELIMINARIES AND PROBLEM FORMULATION

1392.1 Location-Based Multi-Player AR Overview

140A typical location-based multi-player AR application runs
141on a mobile AR device. Users can utilize the equipped cam-
142era to record the surrounding real scene, combine the geolo-
143cation data from multiple sensors including GPS and
144gyroscope, and load the AR data information in real time.
145Then, they can make an integrated display of the acquired
146AR contents, such as texts, images, sounds, videos, and
147models. A typical location-based AR application structure is
148shown in Fig. 2. The sensor data (e.g., video and GPS infor-
149mation) is sent to the SDK-enabled logic layer of location-
150based AR applications. Location-based AR application pro-
151cesses the raw sensor data and requests corresponding AR
152contents from cloud dataset that is maintained by content
153providers. Then, the requested AR contents are download
154to location-based AR applications.
155For location-based AR systems, the location-based AR
156contents are typically stored in a cloud database that is main-
157tained by independent developers (e.g., content provider).

Fig. 1. An example show how the attacker infers the trajectory of the vic-
tim using network traffic.

Fig. 2. A typical location-based AR application with third-party SDK.

2 IEEE TRANSACTIONS ON MOBILE COMPUTING



IEE
E P

ro
of

158 There are several reasons to move AR contents storage and
159 geolocation processing to the cloud server. First, for busi-
160 ness reasons, since the AR service mediates all AR content
161 retrieval, the AR application developer can inject ads,
162 charge content providers, and keep usage statistics easily.
163 Second, to facilitate geolocation-based channel launching,
164 recognition of trigger GPS location is done at the server,
165 because this involves matching against proprietary data-
166 bases using proprietary algorithms. Third, the geolocation
167 contents are always considered as “hot” data, which keep
168 changing all the time. The centralized location processing
169 removes the need to replicate and update the geolocation
170 content database on millions of devices, which is a compu-
171 tationally intensive task and would profoundly impact the
172 actual performance of low-powered mobile devices.
173 Location-based AR applications are different from tradi-
174 tional location-based applications in terms of the content
175 size. In general, the network traffic volume of location-
176 based AR applications is much higher than most conven-
177 tional location-based applications such as weather applica-
178 tions and navigation applications. Due to the large size of
179 the AR contents, the AR applications only cache those AR
180 contents that are within a certain distance from the AR user,
181 which enables the attacker to estimate the location of the
182 AR user by detecting a distinctive pattern in network traffic.
183 Moreover, the network throughput of AR applications is
184 much larger than that of traditional applications, and that is
185 why 5G network is proposed to fulfill the network require-
186 ments of AR applications. In the AR scenarios, the large net-
187 work throughput is much more normal than the traditional
188 smartphone scenarios. This fact gives us a change to dis-
189 guise our applications as an AR application that does not
190 have location services, so that the network traffic introduced
191 by fake AR contents cannot be easily noticed by the victim.
192 To support location-based multi-player AR experience,
193 users can upload or delete their AR contents with real-
194 world GPS coordinates to the cloud database and also
195 download AR contents when they reach those real-world

196GPS coordinates. Moreover, location-based AR applications
197must continuously analyze the GPS location of the device in
198order to download AR contents at the GPS location and to
199anchor AR objects on the screen. Cognizant of the need to
200facilitate the development process, several AR service pro-
201viders have supplied AR client software and SDK to the
202developers to help them build AR applications quickly, as
203listed in Table 1. We can see that most of them (except
204EasyAR) provide location-based (geo API or GPS) and
205cloud-based (content and cloud API) services to enable loca-
206tion-based multi-player AR experience. Moreover, most of
207them issue a free license, which means more developers
208will use these SDKs to build location-based AR applications.
209Therefore, without mitigation solutions in the SDK level, the
210location-based and cloud-based services can be used to infer
211the real-time location information.

2122.2 Key Insight

213Conceptually, a location-based AR application is quite simi-
214lar to a traditional desktop application. They both work on
215input data from the user or the database, and their state-
216transitions are driven by their internal information flows
217(both data flows and control flows). The only fundamental
218difference between them is that an AR application’s input
219points, program logic, and program states are split between
220the AR devices and the server, so a subset of its information
221flows must go through the network. We refer to them as
222data flows. Data flows are subject to eavesdropping on the
223wire and in the air, and thus often protected by HTTPS and
224Wi-Fi encryptions.
225After the user submits the location to the server, the
226returned geolocation-based AR content is typically seg-
227mented at the application layer. In order to estimate the
228location of the victim based on the network traffic, the
229throughput patterns should always exist when a victim is
230walking along the path. Fig. 3 shows the downloading
231throughputs of every 10 seconds when the victim who uses

TABLE 1
Third-Party AR SDK Feature Comparison

Geo API GPS Content API Cloud API Cost

ARCore @ @ @ @(Cloud
Anchors)

Free

ARkit2 @ @ @ @ Free
AR Studio @ @ @ @ Free
ARcrowd @ @ - @ Free + Commercial SDK option
ARmedia @ @ - - Free + Commercial SDK option
ARPA @ - - - Free + Commercial SDK option
Metaio SDK
(now Apple inc)

@ @ @ @ Free + Commercial SDK option

DroidAR @ @ OpenGL or jMonkey Engine - Free + Commercial SDK option
HoloBuilder @ @ @ @ Free + Commercial SDK option
Kudan AR
Engine

- - @ - Free + Commercial SDK option

Vuforia - @ with Vuforia Cloud @ Free + Commercial SDK option
Wikitude @ @ with Wikitude Studio and Cloud

Recognition
@ Free + Commercial SDK option

Motive.io with
Unity

@ with Unity - Free +Commercial SDK option

EasyAR - - - - Free

SHANG ET AL.: ARSPY: BREAKING LOCATION-BASED MULTI-PLAYER AUGMENTED REALITY APPLICATION FOR USER LOCATION... 3
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233 contents (posts with pictures) are deployed at 3 different
234 locations, respectively. Each burst represents a download-
235 ing job of AR contents when the victim reaches the location,
236 and there is no significant network traffic between neigh-
237 boring areas. We can see that the sizes of each burst and
238 inter-burst intervals remain the same for the same AR con-
239 tent deployment at a different time. In fact, even if packets
240 are encrypted using either the transport layer security (TLS)
241 or secure sockets layer (SSL) protocol at the transport layer,
242 their sizes and times of arrival are visible to the adversary.
243 SSL/TLS is a separate protocol that inserts itself between
244 the application protocol and the transport protocol (TCP)
245 that enables applications to be only as secure as the underly-
246 ing infrastructural components. This feature has been
247 reported by many traffic analysis literature [35], [42]. There-
248 fore, if the observable traffic feature is correlated with the
249 segmentation in the application-layer, they can leak infor-
250 mation about the content of the AR message.
251 The goal of attackers is to infer the geolocation informa-
252 tion of the victim from the encrypted data traffic. In other
253 words, an attack can be thought of as an ambiguity-set
254 reduction process, where the ambiguity-set of a piece of
255 data is the set containing all possible values of the data
256 that are indistinguishable to the attacker. How effectively
257 the attacker can reduce the size of the ambiguity-set quan-
258 tifies the amount of information leaked out from the com-
259 munications - if the ambiguity-set can be reduced to 1=R
260 of its original size, we say that log2R bits of entropy of the
261 data are lost. Similar modeling of inference attack has also
262 been discussed in prior research, e.g., elimination of impos-
263 sible traces in [24].

264 2.3 Adversary Model

265 In this study, we consider a capability-restricted attacker
266 that is aiming at revealing the location of users of a specific
267 type of AR applications, called location-based multi-player
268 AR. These AR applications allow users to publish or delete
269 their own AR contents (e.g., images and messages) at any
270 location. The capability of attackers is restricted in the fol-
271 lowing senses:
272 It only has the access right no more than that of a standard AR
273 user (except that it can manipulate its geolocation). Manipulat-
274 ing geolocation is low-cost and easy to implement on many
275 platforms. For example, Android allows users to manipu-
276 late location as long as developer options are activated. By
277 manipulating its geolocation, the attacker can deploy AR

278contents using different accounts at any location without
279physically being there.
280It can trick victims into installing its malicious applications that
281only require non-location-related permissions to monitor network
282throughput of the targetedAR application. In our adversarymodel,
283the attacker can only trick AR users into installing malicious
284applications that only require non-location-related permis-
285sions, which is a common assumption in side-channel attacks
286(e.g., the remote attack in [42]). There are two major ways to
287monitor the network throughput on current smartphone sys-
288tems: 1) through internal system permission; 2) adding a
289virtual private network (VPN). OnAndroid platform, themali-
290cious application can get the network throughput of a specific
291application by using “read phone status and identity” permis-
292sion that is widely required for many popular applications.
293Table 2 shows some popular applications that ask for “read
294phone status and identity” permission and their number of
295installation. We can observe that this permission is common,
296and it is hard for users to notice its potential risk of location
297leaking. Besides, the malicous application can also pretend as
298data usagemonitoring applications that are popular on all plat-
299forms. For instance,MyDataManager [2] claims it is trusted by
300over 14.8 million uses worldwide on Apple Store. In general,
301these applications get network throughput by setting up a
302VPN. Any downloading data stream must pass the VPN
303before being received by an application. By using either of
304these two methods, the malicous application can get the real-
305time network throughput of the targetedAR application.
306In summary, the location-based multi-player AR applica-
307tions that may be used to track users’ location must have
308the following features: 1) high volume of real-time data; 2)
309outsourced geolocation processing, and open privilege of
310uploading AR contents. Although such systems is only a
311small portion of all types AR applications, their users are
312enough to attract attackers to launch attacks.

3133 OVERVIEW OF THE ATTACK

314There are three parts to the location-based side channel attack:
315AR users (victim), AR cloud database, and malicious user
316(attacker). As shown in Fig. 4, a complete attack can be
317divided into five steps. 1). The attacker uploads several spe-
318cially crafted geo-objects with a fake location to the cloud
319database. 2). The victim posts his/her current location to
320query the database. 3). The database returns several geo-
321objects back to the victim including the crafted objects. 4). The
322victim downloads these objects and creates a unique traffic
323pattern. 5). The attacker utilizes the malicious application to
324keep monitoring the traffic pattern of the victim and uses the
325reported pattern to reveal the location of the user.

TABLE 2
Popular Mobile Applications That Ask for “Read Phone

Status and Identity” Permission

Application Number of installation

Tmall 1,000,000+
Youku 10,000,000+
Facebook 1,000,000,000+
Twitter 500,000,000+
Uber 100,000,000+

Fig. 3. Network throughputs of an AR application when a user walk along
a path twice.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING
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327 We first consider the simple attack scenario. In this scenario,
328 the attacker already knows the small region where the vic-
329 tim is and wants to further infer the accurate location of the
330 victim. We will discuss how to locate the victim in a large
331 region in Section 3.2 for more general attack scenarios. To
332 achieve this goal, we propose two AR content deployment
333 strategies with different granularity and deployment cost.
334 AR Content Generation. There are two file formats that
335 have been heavily adopted for displaying 3D models in AR:
336 GL Transmission Format (glTF) and USDZ. Both are open-
337 source format and can be generated from traditional 3D
338 assets. The size of an AR content can be easily controlled by
339 either adding a hidden surface or tweaking the image files
340 (png format) that have been mapped to the 3D Model.
341 Coarse-Grained Location Detection. To locate the victim in a
342 detected region, the basic idea is to cut the region into sev-
343 eral non-overlapped areas. Each area is a circle whose center
344 is the location of AR contents and radius is the searching
345 range of the AR application. Moreover, the size of AR con-
346 tent in one area is distinct from that in any other areas.
347 When a victim shows up in any area, corresponding AR
348 contents will be downloaded to the device, and the attacker
349 can infer the location of the victim based on the size of a
350 downloading job in the network throughput. Although this
351 strategy can locate the victim in an area with limited size of
352 deployed AR contents, it has two key limitations. First, it
353 cannot cover all locations in the small region since the
354 searching area of each AR content is a circle. In some cases,
355 victims in the region may not show up in the searching area
356 of any AR content, so the coarse-grained location detection
357 strategy fails to detect the location. Second, the localization
358 granularity is relatively coarse. Without more information
359 or deployment, we cannot infer more fine-grained location
360 information of the victim within each non-overlapped
361 searching area.
362 Fine-Grained Location Detection. To address the limitation
363 of the course-grained location detection strategy, we also
364 propose a fine-grained location detection strategy with
365 more deployment cost to improve the localization granular-
366 ity and coverage.
367 The location-based AR applications set a physical sens-
368 ing range for each geo-content. For instance, in Pokemon
369 Go, the AR content “Fort” is only reachable if the distance
370 of the user is less than 38 meters. In order to further enhance
371 the localization accuracy and thus break the limit, we utilize

372a space partition attack algorithm similar to [29]. The basic
373idea is to divide the target area into four non-overlapping
374regions and thus pinpoint the victim in the space to pre-
375cisely one of the regions. Fig. 5a shows an example of the
376space partition. Assuming the covered area of an AR con-
377tent is a box, given the maximum sensing range R, we can
378place fake AR contents at the origin (illustrated as red star
379in Fig. 5a) to cover a large area (highlighted in yellow). To
380improve the localization accuracy, the attacker can also
381place fake AR contents at four corners (illustrated as light
382red star) of the highlighted area. By doing this, the attacker
383can locate the victim in each smaller yellow box and further
384enhance the accuracy to R=2. We could repeat this partition
385for multiple rounds until the expected accuracy is achieved.
386The whole algorithm is summarized in Algorithm 1. For the
387simplicity of problem presentation, we consider the area
388where the victim is as the box rather than the circle.

389Algorithm 1. Space Partition Algorithm for Fine-Grained
390Localization

391In: Initial location I=(cX; cY ) and resolution d

392Out: Location set P
3931: Initial a queueQ ðcX; cY ; dÞ
3942: while d � threshold orQ is not empty do
3953: ðcX; cY ; dÞ  popQ
3964: P ðcX � d; cY � dÞ
3975: Q ðcX � d=2; cY � d=2Þ

398We then study the case in which the small region is fully
399covered by the geo-AR content. We assume that each geo-
400AR content is capable of covering a fixed radius r around it.
401Therefore, we can model each geo-AR content as a disk
402with radius r. In order to cover the entire two-dimensional
403plan with these disks, the appropriate optimization metric
404should be the amount of geo-AR content used per unit area
405(e.g., density). We first introduce the strip-based deploy-
406ment strategy (shown in the highlight part of Fig. 5b). The
407strip-based strategy places the geo-AR contents along a line
408such that the distance between the centers of any two adja-
409cent circles is r. This strategy is good for tracking a user
410along a given path.
411In order to tile the entire plane, we need to place the
412geo-AR content using the strip-based strategy repeatedly.
413Given a 2D plane, for every even index k, place a strip of
414geo-AR content oriented in parallel to the x-axis such that

Fig. 4. Overview of the attack (in five steps).
Fig. 5. Accuracy and coverage analysis for a 2D region.

SHANG ET AL.: ARSPY: BREAKING LOCATION-BASED MULTI-PLAYER AUGMENTED REALITY APPLICATION FOR USER LOCATION... 5
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415 the point (0, kð
ffiffi
3
p
2 þ 1Þr) is the center of a geo-AR content

416 constituting the strip. For every odd index k, place a strip
417 of geo-AR content oriented parallel to the x-axis such that
418 the point (r2, kð

ffiffi
3
p
2 þ 1Þr) is the center of a geo-AR content

419 in the strip. Next, we do a similar process along the y-axis.
420 For every odd integer k, we place two geo-AR contents at

421 (0, kð
ffiffi
3
p
2 þ 1Þr�

ffiffi
3
p
2 r). The full geo-AR content displacement

422 pattern is shown in Fig. 5b. It can be verified that our
423 solution provides connected coverage to the entire two-
424 dimensional region.
425 To support fine-grained localization with complete cov-
426 erage, the key challenge is to propose a special AR content
427 size sequence so that we can accurately locate the victim in
428 any overlapped area. To address this issue, we design an
429 AR content size generation algorithm based on super increas-
430 ing sequence.
431 Let the sizes of crafted AR contents at different geoloca-
432 tions W ¼ ðw1; w2; . . . ; wnÞ be a super increasing sequence.
433 Then

wk > wk�1 þ . . .þ w2 þ w1; for all 2 � k � n; (1)
435435

436 where each element wi in set W is the size of AR contents
437 deployed at a geolocation. Therefore, each AR content wk has
438 its unique size. Moreover, the combination of multiple AR
439 contents is also unique. This property allows the attacker to
440 place overlappedAR content, which greatly enhances the pre-
441 cision of our attack method. The size of each AR content wi

442 can be computed based on the Algorithm 2. Note that c is a
443 constant value picked up by the attacker to avoid overflow.
444 Once W is generated, the attacker can then execute an AR
445 content generation function to generate a set of location-based
446 AR contents based on the given size wi. Note that this is an
447 application-specific function, so the attacker may need to fur-
448 ther alter the size (by adding or subtracting a constant value p)
449 of each content or deployment multiple AR contents at a sin-
450 gle location to achieve a successful attack based on the limita-
451 tion of theAR application.
452 We can also notice that the fine-grained location detec-
453 tion is a special case of coarse-grained location detection. In
454 coarse-grained location detection, each non-overlapped
455 searching area must be a circle while each non-overlapped
456 searching area can be in any shape. Although fine-grained
457 location detection can achieve better granularity and cover-
458 age, it will also introduce more deployment cost since more
459 non-overlapped searching areas are introduced. In real-
460 world attack scenarios, the attacker can pick either strategy
461 based on the trade-off between performance and cost.

462 Algorithm 2. AR Content Generator

463 In:Size n, Constant number c
464 Out:SetW
465 1: for i in range(1, n) do
466 2: wi  sumðw0; w1; . . . ; wi�1Þ þ randomð1; cÞ

467 3.2 Recursive Region Detection

468 In real-world scenarios, it is usually hard for attackers to esti-
469 mate the small region where the victim shows up. If we keep
470 using proposed AR content deployment strategies for a large
471 region, both of them will produce unlimited AR content size

472at some locations, which produces abnormal network traffic
473that the victim can easily notice andmakes the attack unfeasi-
474ble. In order to reduce the maximal size of the AR contents
475deployed at each location, we first narrow the search area by
476repeating partitioning a large area into four non-overlapped
477regions. For each partition, we deploy AR contents with the
478same size at all locations in each partitioned region, and the
479distance between neighboring AR contents is twice the length
480of the searching range of the AR application to avoid over-
481lapped areas. To robustly distinguish four small regions based
482on the network throughput, four different sizes of AR contents
483for four different regions are generated based on Algorithm 2.
484Assuming the victim is moving, once a victim shows up in
485any region, our attackmodel can quickly identify the region of
486the victim. Then, our attack model deletes all AR contents and
487further repeats this process in the detected region until we can
488finally locate the victim within a much smaller region (e.g., a
489block) for further accurate localization and tracking. Fig. 6
490shows an example of our hierarchical localization. The num-
491ber of possible locations of the victim can be reduced to 4 after
492repeating the process twice.

4933.3 Network Throughput Processing

494Noise Removal and Throughput Accumulation. The collected
495network traffic of AR applications contains noise. On the
496one hand, the noise comes from various link conditions or
497other data exchange except downloading AR contents
498between the AR application and the server. On the other
499hand, based on our experiments, the network throughput
500not only counts the bytes of the content in packets but also
501counts the bytes in packet header or other information
502within the packets. So, the raw network traffic data cannot
503be directly used to parse the real-time locations. In order to
504accurately track the location of the victim using network
505traffic, we first eliminate small traffic that cannot be caused
506due to downloading AR contents from the server based on
507a threshold t. Moreover, we need to accurately estimate the
508network throughput downloaded at each location in order
509to infer the location of the victim based on the special
510throughput pattern. Since the AR contents are not down-
511loaded immediately, we need to accumulate the network
512throughput within a moving time window of length T in
513order to accurately estimate the size of AR contents
514deployed at each location. The length of the moving time
515window is set as

T ¼ maxðWÞ
�

� Fs
� �

þ 1; (2)

517517

518where maxðWÞ is the maximal size of AR contents, � is the
519average downloading speed of the AR application measured

Fig. 6. Example of recursive region detection.
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521 traffic monitoring. As we observe in Section 2.2, there is no
522 significant network traffic between two neighboring locations,
523 which means that the size of AR contents at each location is a
524 local maxima in accumulated throughput sequence. Based on
525 this observation, we find the size of AR contents by finding
526 the local maxima in the accumulated throughput sequence.
527 Each local maxima represents a single location where the AR
528 contents are deployed or a location that iswithin the searching
529 range of AR contents deployed at multiple locations. Fig. 7
530 shows an example of our network traffic processing. The raw
531 network throughput is collected fromWallaMe when the vic-
532 tim passes three locations where 1, 2, and 3 pictures are
533 deployed respectively. After throughput accumulation, we
534 can observe three local maximas (blue markers) in accumu-
535 lated throughput that correspond to three downloading jobs
536 in rawnetwork throughput.

537 Algorithm 3. Localization Algorithm

538 In: A local maxima in accumulated throughput sequence S,
539 generated AR content size setW
540 Out: Inferred locationX
541 1: X ¼ ;
542 2: n sizeOfðWÞ
543 3: for i in range(n, 1) do
544 4: if S > wi then
545 5: X ¼ X [ xi

546 6: S  S � wi

547 7: else
548 8: xi  0

549 Localization.
550 The localization algorithm works as follows: given a local
551 maxima S in accumulated throughput sequence and gener-
552 ated AR content size set W, we aim to infer the location
553 X ¼ ðx1; x2; . . . ; xmÞ of the victim. X ¼ ðx1; x2; . . . ; xmÞ
554 means the location that is within the searching range of AR
555 contents deployed at m different locations, and m is a posi-
556 tive integer. For the coarse-grained strategy, m ¼ 1. For the
557 fine-grained strategy, since the integers in set W form a
558 super increasing sequence, we can prove that the inferred area
559 X ¼ ðx1; x2; . . . ; xmÞ is unique if X exists. The location X
560 can be computed by the following localization algorithm
561 (Algorithm 3).
562 After obtaining the location of each local maxima, we fur-
563 ther calibrate the localization results. If the victim is
564 detected in the overlapped area of a set of locations, we will

565double check the physical distance among locations in the
566set. If the searching ranges of locations in the set do not
567have a common overlapped area, we argue that the received
568throughput is noisy and the victim is at the feasible over-
569lapped area of a subset of locations whose total size is maxi-
570mal. The trajectory of the victim is recovered once all of its
571locations on the path are obtained. However, due to inaccu-
572rate GPS data, a victim may receive the data that is
573deployed by the attacker more than one time. To remove
574redundant information, for a sequence of continuous and
575identical location estimations, we only reserve one of them.

5764 EXPERIMENTAL SETUP

5774.1 Implementation

578We built a real testbed in order to effectively evaluate the
579attack methods we propose. Our testbed included four
580parts: an Android application for monitoring network traf-
581fic, an Android application for imitating the behaviors of
582current AR applications, a customized location provider for
583location spoofing, and a back-end server that receives the
584requests from all AR clients and returns corresponding
585data. Simple graphical user interfaces (GUI) are designed to
586help subjects to collect data. We illustrate the system design
587and implementation in detail in the following paragraphs.
588Network Traffic Monitoring. The core part of our system is
589accurately monitoring the network traffic of a specific appli-
590cation. To achieve this goal, we studied the feasibility of
591monitoring network traffic on Android platform. Network-
592StatsManager can provide access to network usage history
593and statistics of other applications, which enables an
594attacker to implement a listener in another application on a
595device of the victim. Although NetworkStatsManager needs
596“read phone status and identity” permission that is a pro-
597tected permission, a lot of popular Android applications
598ask for this permission, as shown in Table 2. This fact ena-
599bles the attacker to hide this listener in a popular application
600without being noticed by the victim. To get the real-time
601network, we created a background service that can log the
602total network usage every second. The throughput of each
603second was acquired by calculating the difference between
604neighboring entries in the log file.
605Location Spoofing. Location spoofing is used to generate
606mock locations, so that the attack can deploy fake AR con-
607tents at any location without physically being there. More-
608over, other AR users can also deploy AR contents, which
609may change the pattern of network traffic on the device of
610the victim and break our attack model. To address this prob-
611lem, the attacker needs to know the size of AR contents
612deployed by AR users at those locations the victim may
613appear, which can also be solved by leveraging location
614spoofing. Before deploying fake AR contents, the attacker
615first sends fake geographical locations where he/she wants
616to deploy fake AR contents to the server. The attacker moni-
617tors the network traffic that reflects the size of AR contents
618deployed by normal AR users. Based on the size of existing
619AR contents, the attacker rearranges the size of fake AR con-
620tents deployed at each location. Most of the Android appli-
621cations acquire location via a location provider (e.g.,
622“network” or “GPS”) from the location system service.
623However, it is possible to add customized location

Fig. 7. Noise removal and throughput accumulation.
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624 providers under certain circumstances such as debugging.
625 The attacker needs to enable “Allow mock location” option
626 in the developer options of their Android device before get-
627 ting access to the mock location API. This API asks for five
628 variables: latitude, longitude, altitude, speed and accuracy. Typ-
629 ically, the location-based AR applications only utilize the
630 latitude and longitude values to determine current location of
631 the victim.
632 Location-Based AR Application. We first studied several
633 state-of-the-art AR applications and SDKs (e.g., Google AR
634 and Wikitude) and found that these AR applications and
635 SDKs send local information (e.g., locations and images) to
636 the server using a simple HTTP(S) GET requests. After get-
637 ting the requests from the client, the AR server serializes
638 returned information into a structured data (e.g., JavaScript
639 Object Notation, Extensible Markup Language, and Protocol
640 Buffers) using HTTP protocol and returns it to the AR appli-
641 cation. Extended studies show that all existing AR applica-
642 tions and AR SDKs are based on the same mechanism.
643 Therefore, our AR application is equivalent to most existing
644 applications or future applications developed using current
645 SDKs in terms of data transmission and communication.
646 Therefore, we built a location-based Android application
647 to imitate the behavior of current AR applications. The
648 application keeps collecting GPS information, sends it to
649 our back-end server using GET request, and receives corre-
650 sponding data from the server. We further tested it and
651 ensured that our AR application has the same behavior of
652 network traffic and mechanism for data transmission. To
653 ensure the GPS locations sent to the server are accurate, we
654 only sent a GET request to the server when the accuracy of
655 measured GPS data was within 8 meters. Although our self-
656 built AR application had most features of real AR applica-
657 tions, we could not perfectly simulate and reproduce all
658 behaviors of real AR applications. To further show that our
659 attack model is feasible to be launched on real AR applica-
660 tions, we also evaluated our attack model on WallaMe.
661 Back-End Server. We implemented our server on a public
662 IP address based on HTTP(S) protocol. The back-end server
663 receives requests from all mobile clients, analyzes their geo-
664 graphical location, and returns corresponding AR contents.
665 For each request, we first compared its GPS location to those
666 of all deployed AR contents. If the user appeared around
667 one or more AR contents, we would generate a temporal file
668 with the corresponding size in milliseconds and return it in
669 the response.

670 4.2 Data Collection

671 To evaluate the performance of our attack model, we con-
672 ducted various experiments on our testbed on a campus, as
673 shown in Fig. 8. On the path, we uniformly picked 8 loca-
674 tions on the map. The distance between neighboring loca-
675 tions was about 60 meters. The searching range of each
676 location was set to different values to evaluate the perfor-
677 mance of our attack strategies on detecting single location
678 and detecting the overlapped area. For coarse-grained loca-
679 tion detection, the searching radius is about 20 meters, and
680 the size of AR contents at the first location was set to 1 KB
681 and was increased by 1 KB for each of the following loca-
682 tions. For fine-grained location detection, the searching

683radius is about 45 meters, and we deployed AR contents
684whose total sizes follow the rule of super increasing sequence
685at each location. The minimal size of deployed AR contents
686was also 1 KB. We control the size of AR contents at each
687location by 2 ways: 1). Deploying more AR contents with
688equal size. 2). Changing the size of a single AR content by
689adding more information (e.g., pictures with specific sizes)
690to the content. 12 healthy volunteers with their ages ranging
691from 21 to 26 were involved in the study. Among 12 volun-
692teers, we asked 8 of them to use our self-built AR applica-
693tion and the other 4 of them to use WallaMe for testing. We
694collected 10 trials from each volunteer, and each trial lasted
695for about 10 minutes. During each trial, the volunteer was
696required to pick a path and pass different locations while
697opening two applications (the AR application and the net-
698work monitoring application) and connecting their devices
699to their personal hotspot. The server returned correspond-
700ing AR contents based on the real-time location of the user
701without introducing extra traffic. Besides recording the net-
702work traffic of the AR application during each trial, we also
703logged the received GPS coordinates as the ground truth.

7044.3 Evaluation Metric

705The location reported by our system is not the real geoloca-
706tion with 2-dimension coordinates but a non-overlapped
707area. The size of the reported area is determined how the
708attacker perform coarse-grained and fine-grained location
709detection. Therefore, instead of using the distance as a met-
710ric, we evaluate the system performance based on how
711accurately our system can correctly locate the victim in a
712area. Here a correct detection means that our attack system
713detect that the user is in an area when the user is exactly in
714that area. The location detection accuracy Accu is defined as

Accu ¼ Lcorrect=Lall; (3)
716716

717where Lcorrect is number of correctly detected location (area)
718and Lall is the number of all locations (areas) that the victim
719has passed.

7205 EXPERIMENTAL RESULTS

7215.1 Performance of Location Detection

722Single Location (Non-Overlapped Area) Detection. Since the
723performances of both the recursive region detection and
724localization strategies are based on how accurately we can
725detect the victim at a location, we first evaluated the

Fig. 8. The AR contents deployment.
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727 detection using our self-built AR application. We removed
728 the noise in the raw data and processed it with our location
729 detection algorithm. Then, we compared the detection
730 results with the ground truth. The location detection accu-
731 racy is defined as the number of correct detections divided
732 by the total number of detections.
733 Fig. 9 shows the single locations detection accuracies for
734 all locations by using either the coarse-grained location detec-
735 tion strategy or the fine-grained location detection strategy.
736 Evaluation results show that our coarse-grained location
737 detection strategy can locate the victim in non-overlapped
738 areas with a mean accuracy of about 94.6 percent. Since the
739 size differences of AR contents deployed at different loca-
740 tions are much greater in fine-grained strategy by using super
741 increasing sequence, it can provide a better average accuracy of
742 about 97.1 percent. Moreover, we notice that the location
743 detection accuracies are slightly lower for those locations
744 where more AR contents were deployed. The reason is that
745 the downloading process of large files is easier to be influ-
746 enced by unstable network, which breaks the special patterns
747 in network throughput.
748 Overlapped Area Detection. In our fine-grained location
749 detection strategy, the victimmay also appear in the searching
750 areas of AR contents deployed at multiple locations. Instead
751 of assigning the victim to one location, wewould like to locate
752 the victim in the overlapped area accurately. To evaluate how
753 accurately our system can detect the overlapped area, we
754 evaluated how accurately the victim can be located in the
755 overlapped area of two searching areas. Since the sizes of AR
756 contents deployed by the attacker are unique at different loca-
757 tions, one location should have more AR contents deployed
758 than the other one.We repeated the experiment for 100 times,
759 and Table 3 shows the detection accuracy for the locationwith
760 more AR contents and the location with less AR contents. We
761 can see that our location detectionmodel can accurately detect
762 the location with more AR content, and the percentage of the
763 wrong prediction for the location with less AR contents is no
764 more than 1 percent. These results show that it is feasible to
765 locate the victim even if he/she is in an overlapped area.
766 Granularity of Location Detection. There is a trade-off in
767 how densely the attacker should deployed the AR contents
768 in a small region. If we deploy AR contents at many

769different locations, we can estimate locations of the victim
770with a better granularity, but the location detection accuracy
771may not be good due to inaccurate GPS coordinates. Also,
772the network usage is also higher, which makes our attack
773easy to be noticed by the victim. In fact, the fewer locations
774where we deploy AR contents, the better the detection accu-
775racy is expected to be, but more details of the trajectory of
776the victim are lost. In order to study how densely the AR
777contents can be deployed with a good detection accuracy in
778our attack model, we adjusted the distance between neigh-
779boring locations and studied its influences on location
780detection using our self-build testbed. In this experiment,
781the searching range of AR contents at each location was
782about 20 meters. We asked a volunteer to walk along the
783same path for 10 times. Along the path, we deployed AR
784contents at as many locations as possible with the distances
785between neighboring locations were about 70 meters,
78627 meters, and 13 meters, and the results are shown in
787Table 4. When the distance is larger than 27 meters, ARSpy
788can achieve an excellent location detection accuracy of at
789least 98 percent since at most 14 percent of the searching
790area is overlapped with those of neighboring locations. The
791accuracy drops to 60 percent when the distance is about
79213 meters. Considering the deviation of GPS measurements
793is from 3 meters to 8 meters in outdoor environment, the
794noisy GPS data cannot reflect the real-time location of the
795victim relative to each location where AR contents were
796deployed. If GPS data is inaccurate, the server would not
797consider the victim is at that location. Therefore, the device
798of the victim would not download the AR contents
799deployed by the attacker, and the attacker cannot track the
800victim based on the network throughput.

8015.2 Performance of Trajectory Construction

802It may also be beneficial for the attacker to know the actual
803route through which the victim traverses on his way to the
804destination. For this purpose, we also calculate for each con-
805structed trajectory the Levenshtein distance [28] between it
806and the actual trajectory. The Levenshtein distance is a stan-
807dard metric for measuring the difference between two
808sequences. It equals the minimum number of updates
809required to change one sequence to the next. The distance is
810normalized by the length of the longer trajectory of the two.
811This allows us to measure the accuracy of the algorithm for
812estimating the full trajectory the user traversed. For each esti-
813mation, we also note whether it is an exact fit with the actual
814route (i.e., zero distance). The percentage of successful locali-
815zation of destination, average Levenshtein distance, and per-
816centage of exact full route fits are calculated for each type of
817estimated route. To benchmark the results, we note in each
818table the performance of a random guess algorithm which
819outputsmerely a randombut feasible route.

Fig. 9. Performance of a single location detection.

TABLE 3
Location Detection Accuracy for the Overlapped Area

Location with More AR content Less AR contents

Accuracy 100% 99%

TABLE 4
Location-Detection Accuracies With Different Distances

Between Neighboring Locations

Distance (meter) 70 27 13

Accuracy 100% 98% 60%

SHANG ET AL.: ARSPY: BREAKING LOCATION-BASED MULTI-PLAYER AUGMENTED REALITY APPLICATION FOR USER LOCATION... 9



IEE
E P

ro
of

820 We evaluate the performance of the trajectory construc-
821 tion using the dataset for single location detection, and
822 Table 5 illustrates the trajectory construction performance of
823 ARSpy and the random guess (RG)-based attack. Compared
824 with the random guess-based attack model, ARSpy can
825 achieve much better trajectory construction performance.
826 Moreover, ARSpy can accurately predict the destination of
827 the victim with a high accuracy of 96.72 percent. Although
828 the percentage of exact full route fits is 77.5 percent, we
829 can note that the average normalized Levenshtein distance
830 is only 0.0345, which means only one or two locations
831 are wrongly detected for a path with eight locations even
832 if the constructed trajectory does not fit the real trajectory.
833 The high percentage of successful localization of destina-
834 tion and the low percentage of exact full route fits show
835 that ARSpy can accurately track the victim for a more pro-
836 longed path.

837 5.3 Performance on A Real AR Application

838 Experimental results show that our attack methods can
839 achieve high performance on our self-built AR application.
840 To show the feasibility of our attack methods on a large
841 range of real AR applications, we evaluated the perfor-
842 mance on WallaMe. WallaMe is a free AR application that
843 allows users to take a picture of a surface around them and
844 add information (e.g., words, stickers, and photos) on them.
845 Once the picture is posted, it will be geolocalized and visible
846 by everyone passing by. Also, the user who uploads the pic-
847 ture can make the pictures private, which means that the
848 picture is visible only to specific groups of people. In this
849 experiment, we evaluated how accurately three locations
850 can be detected by our attack methods. Specifically, we
851 deployed 1, 2, and 4 pictures at three locations, and the sizes
852 of those pictures are nearly equal. Since the searching radius
853 of WallaMe is about 1 block, the distance between each pos-
854 sible next location and the current location is about 180
855 meters to generate overlapped areas between two neighbor-
856 ing locations. We ask four volunteers to pass these three
857 locations for 20 times. Based on the accuracies of GPS meas-
858 urements, each volunteer was regarded at a single location
859 or the overlapped area of two locations by WallaMe. Experi-
860 mental results show that our system can successfully detect
861 the single location or the overlapped area with an average
862 accuracy of 90 percent, which implies that our attack model
863 is also feasible to be launched on existing AR applications.

864 5.4 Influence of Different Paths

865 To show the generalization of our attack model, we further
866 evaluated the location detection accuracy for three other
867 paths. As shown in Fig. 10a, a volunteer was asked to walk
868 through each region along the colored path. The three paths
869 were carefully selected to cover different types of outdoor

870scenarios. For example, the regions of the black path and
871the yellow path have high buildings of at least eight floors.
872We used these two regions to evaluate the attack perfor-
873mance with inaccurate GPS measurement due to high build-
874ings. The region of the red path has low building of at most
875four floors. Across all experiments in this subsection, we
876used our coarse-grained location detection strategy to
877deploy AR contents at different locations. The distance
878between neighboring locations is about 50 meters, and the
879searching radius of each location is set as 20 meters. The
880experimental results are shown in Fig. 10b. We can see that
881our system can provide location detection accuracy for at
882least 85.7 percent even if the GPS measurements are influ-
883enced by the high buildings.

8845.5 Performance on Different Devices

885In our attack model, we assume that the attacker does not
886know what smartphone the victim uses. Therefore, we fur-
887ther conducted experiments to evaluate the effectiveness of
888our attack model on different devices using the deployment
889configuration in Fig. 8 using the coarse-grained strategy.
890We chose Google Nexus 5 and Nexus 6 as devices in this
891experiment. During the experiment, we asked a volunteer
892to hold two devices while walking along the path for ten
893times. Fig. 11 shows the location detection accuracy on two
894devices. We found that Nexus 6 has a better performance
895than Nexus 5. The reason is the sampling rate of GPS data.
896In most cases, both of the two devices can receive a GPS
897coordinate every 1 second. However, Nexus 5 needs to wait
898for more than 1 second to get the next GPS coordinate at a
899probability of 1.39 percent in our experiments, while Nexus
9006 only has this issue at a probability of 0.93 percent. More-
901over, the maximal delay of receiving the next GPS coordi-
902nate on Nexus 5 was 22 seconds, while that on Nexus 6 was
903only 12 seconds. Considering the walking speed is about
9041:4 m=s, a victim using Nexus 5 is more likely to miss a

TABLE 5
Performance of Trajectory Construction

Destination Avg Levenshtein distance Exact fit

ARSpy 96:72% 0.0345 77:5%
RG 13:75% 0.7665 0

Fig. 10. System performance for three paths.
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906 tim may lose some GPS coordinates, our attack model can
907 achieve high location detection accuracy on both of the two
908 devices, and at most one location was missed in each trial.
909 The high location detection accuracy indicates that our
910 attack model is feasible on different devices, which means
911 that the attacker can deploy this attack on any victim who is
912 using AR applications.

913 5.6 Performance on Large-Scale Long-Term
914 Tracking Simulation

915 According to [50], the top N locations inferred from human
916 mobility data can be used to reveal the identity of a user.
917 For instance, top two locations may link to home and work
918 locations of the user, top three locations may correspond to
919 home, work and shopping locations. [15] shows that the
920 human mobility traces are highly unique and more than
921 95 percent of the individuals could be uniquely identified
922 based on the top four locations. In this subsection, we dis-
923 cuss the performance on long-term tracking of the top N
924 locations inferred by the network throughput data of the
925 user. The simulation is based on the GeoLife Dataset [51],
926 which contains GPS trajectories of 182 users in a period of
927 over three years.We replayed the GPS data (as ground truth)
928 to simulate user moving trajectory in a location-based AR
929 application that we created and then used ARSpy system to
930 launch attack and infer locations of the user. Our simulation
931 assumes that the attacker has some pre-knowledge of the
932 target, and knows the city that he/she lives in. We set the
933 detection range of each AR content equal to 1.2 km. Shown
934 in Fig. 12, our AR attack method is able to deduce at least
935 top four locations for more than 50 percent the user data
936 and achieves 86 percent detection rate for the top two (and
937 above) locations. This means that the attacker can infer these
938 users’ home and workplace solely based on the network
939 throughput data.
940 Fig. 13 illustrates the relationship between the number of
941 deployed AR contents and the margin of location error. In
942 this experiment, we calculate the distance between the loca-
943 tion reported by our AR attack method and the ground

944truth. According to the results, to track an individual user
945in a city, the attacker needs to deploy at least 1,000 fake
946AR contents to the server to bring down the error to around
94730 meters. However, the actual number depends on the
948detection range of the AR contents and the size of the track-
949ing area. The results show that our proposed algorithms can
950be used for long term tracking and is able to correctly infer
951topN locations of the user with high accuracy, which means
952that the attacker can track a target even if the server puts a
953restriction on the AR content update rate.

9545.7 Influence of Traffic Noise

955The logged throughputs always contain noise. The noise can
956be from other applications on the same device. For example,
957the downloading jobs of other applications will cause net-
958work congestion, which may change the traffic pattern of
959the AR application and make it difficult for the attacker to
960recognize deployed AR contents. On the other hand, the
961noise can also be from other downloading jobs generated
962within the same AR application. For example, the AR appli-
963cation needs to synchronize with the server and download
964relative contents. This kind of traffic can be wrongly recog-
965nized as AR content deployed by the attacker, which leads
966to the attacker being unable to construct the trajectory of the
967victim.
968To evaluate the influence of downloading jobs of other
969applications, we let a volunteer walk along the path in Fig. 8
970for 10 times while using our self-built AR application. At
971the same time, the volunteer downloads a large file via Goo-
972gle Play on the same device. Experiment results show that
973all locations can be detected, which implies that the down-
974loading jobs of other applications will not destroy the traffic
975pattern of AR application and thus do not influence the
976location detection performance of our attack model.
977In order to evaluate the location detection performance
978under the influence of extra traffic generated by the AR
979application, we let the server send extra data to our AR
980application based on the network throughput distribution
981of Ingress and Pokemon. In this experiment, the threshold t

982is set to the minimal size of fake AR contents in order to
983remove the influence of extra network traffic. Since super
984increasing sequence determines the size of AR content
985deployed at each location, the smallest size of AR contents
986at all locations should be as small as possible. We set the
987smallest size to different values in order to evaluate what is
988the smallest size of AR contents required to ensure good
989location detection accuracy. Experimental results show that
990the location detection accuracy rises with the increase in
991size of fake AR contents. When the size of the smallest fake
992AR content is 20 KB, ARSpy can provide location detection
993accuracy of at least 92 percent, which proves that our attack

Fig. 11. Location-detection accuracies on two devices.

Fig. 12. Percentage of topN locations.

Fig. 13. Margin of error verses number of AR contents.
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995 exchanges extra data with the server.

996 5.8 Influence of Different Speeds

997 In Sections 5.1 and 5.2, we only evaluate the performance of
998 our attack model in the scenario where the victim is walking.
999 In this subsection, we evaluate the location detection perfor-

1000 mance of our attack model when the victim is jogging at a
1001 speed of about 2:5 m=s. Here we do not consider the scenario
1002 where the victim is running at high speed sincemore network
1003 bandwidth and computation resources are required in this
1004 scenario, and few AR applications are designed for running.
1005 In this experiment, we ask a subject to run two applications
1006 we build while jogging along the path on the campus. Experi-
1007 ment results are shown in Fig. 14. It is clear that our attack
1008 model can achieve almost 100 percent location detection accu-
1009 racy for all 8 locations. By comparing the ground truth in both
1010 walking and jogging scenarios, we find that the trajectory in
1011 jogging scenario can be approximately produced by decimat-
1012 ing the trajectory in a walking scenario by 2. As long as the
1013 searching radius (12meters in our system) can tolerate the dis-
1014 placement of the victim between two GPS measurements
1015 (about 5 meters while jogging), our scheme can still track the
1016 victim even if the victim ismoving at high speed.

1017 5.9 Battery Consumption

1018 Besides accuracy and robustness, battery consumption is
1019 another important issue we need to consider when perform-
1020 ing an attack. If an attack model requires a significant portion
1021 of available CPU time, the significant battery drain can be
1022 quickly noticed by the victim. Current security solutions can
1023 detect a variety of attacks by sensing abnormal battery behav-
1024 ior and energy patterns [18]. In our attackmodel, the network
1025 traffic monitoring is the key way to perform the attack and
1026 may cause battery drain. In order to evaluate the battery con-
1027 sumption of our network traffic monitoring, we used Battery-
1028 stats and Battery Historian [1] to collect battery data. Battery
1029 Historian converted the report from Batterystats into an
1030 HTML visualization in the browser and provided the battery
1031 data in a process level. During the experiment, we ran the
1032 application for about 75 minutes while all the other applica-
1033 tions on the target smartphone remained closed and the
1034 screen kept on. Experimental results show that our network
1035 trafficmonitoring application consumed about 0.03 percent of
1036 the total energy, while the battery consumption of GOOGLE_
1037 SERVICE was 0.05 percent. The results show that our attack
1038 model only introduces insignificant battery drain that cannot

1039be detected by the victim and the battery behavior-based
1040security solutions.

10416 MITIGATIONS

1042The cause of privacy leaks in location-based AR application is
1043that, for the same path, the network throughput changes over
1044the time is in a unique and identifiable way. Segmenting the
1045returned data may reduce the granularity of the leak but does
1046not prevent the attacker from revealing the location. A
1047straightforward solution would be to store all AR contents
1048locally (like Pokemon Go) to totally eliminate the potential
1049information leak since the AR applications do not download
1050contents from the server in real time. However, this solution is
1051not suitable for large-scale AR systems which contain tons of
1052ever-changing 3D AR models. Another solution would be
1053padding each packet to achieve constant-size encoding to
1054eliminate the leak, at the risk of a very inefficient encoding
1055scheme since it would require transmitting more redundant
1056traffic than the actual content size. Similarly, implementing a
1057tight rate control mechanism would result in an inefficient
1058transmission protocol.
1059In order to limit the capability of the attacker, we propose 3
1060possible mitigation methods. First, SDK providers or develop-
1061ers can deploy andmaintain an active cache with variable size
1062to store the AR contents on the client side. The AR contents
1063can be not only downloaded to the cache when the AR user
1064reaches the location but also prefetched from the server based
1065on the location of the victim and movement pattern. Once the
1066AR contents are prefetched to the cache, they can be enabled
1067to be displayed by sending a control signal instead of
1068completely re-downloading it. Thus, the attacker has to know
1069the detailed implementation of such variable cache and pre-
1070dict the movement of the victim in the sameway as the server.
1071Otherwise, the network throughput pattern can be destroyed,
1072and the attacker cannot reconstruct the trajectory of the victim.
1073Second, the developers of AR application can put more
1074limitations on AR users. For example, any AR user cannot
1075deploy toomanyAR contents at a single location. Meanwhile,
1076the size of each AR contents should not be too large. By doing
1077this, the capability of the attacker is greatly limited since the
1078property of super increasing sequence is hard to be satisfied. For
1079example, the general deployment strategy cannot work since
1080themaximal number ofAR contents is limited.
1081Another method is to further limit the permission of net-
1082work traffic monitoring on the devices of the victim, which
1083means third-party applications cannot get the network traf-
1084fic information. Existing mobile operating systems have
1085noticed the potential threat of exposure of network traffic
1086information. For example, Android protects network traffic
1087information using “read phone status and identity” permis-
1088sion, but the user can still be deceived to install malicious
1089applications since many popular applications also ask for
1090this permission. Similarly, network content filters are not
1091permitted for regular applications in Apple store, but the
1092attacker can disguise the malicious application as a normal
1093application (e.g., Sift [4]) and deceive users to install the
1094malicious application on the device. To address this issue,
1095the network traffic data should be visible only to the operat-
1096ing systems, and the users should be alerted if the network
1097traffic information is being monitored by any service.

Fig. 14. Location detection accuracies in jogging scenario.
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1098 7 DISCUSSION

1099 Scaling Our Approaches to Various AR Applications. Different
1100 AR applications may use different compressing algorithms,
1101 which results in different traffic patterns for the same AR
1102 content and influences the geolocation estimation. How-
1103 ever, as long as the developers do not change the way to
1104 store and deliver the AR contents, the attacker can still
1105 know the relationship between the size of fake AR content
1106 and the traffic pattern after collecting enough data of a new
1107 AR application.
1108 Influence of Other AR Contents From Other Users. In real sce-
1109 narios, theremay also beAR contents fromother users around
1110 some geolocations, which alters the traffic pattern on the
1111 device of the victim. The attacker can address this issue by
1112 monitoring the size of all AR contents at each geolocation peri-
1113 odically. If some AR contents are already deployed by other
1114 users at a particular location, the attacker can change the
1115 size of fake AR contents accordingly so that the total size of
1116 fake and normal AR contents at each geolocation meets the
1117 requirement of either coarse-grained or fine-grained localiza-
1118 tion. The attacker can dynamiclly change the cycle time based
1119 on the size of interested region and cost. Even if other users
1120 frequently change the network traffic profile at a locations, the
1121 attackers can give up the current attack and restart attacking
1122 the victimwhen the victim reaches a better area. Although the
1123 attackers can losemuch location information of the victim, but
1124 these limited information can still be aggregated with other
1125 data to infer more locations of the victim that are not detected
1126 by our system. For instance, [15] shows that the humanmobil-
1127 ity traces are highly unique and more than 95 percent of the
1128 individuals could be uniquely identified based on the top four
1129 locations. Therefore, the other locations of the victim in a day
1130 can be easily inferred by combining our detection results with
1131 other anonymous location dataset.
1132 Limitations and Future Work. Our system involved a limited
1133 number of participants, and all users are university students.
1134 To better understand the performance of our system, more
1135 participantswithmore diverse backgroundsmust be engaged.
1136 Also, the experiments were all conducted within 6 months.
1137 Considering that human behaviors and habits (e.g., spe-ed of
1138 walking) may change, a long-term evaluation should be con-
1139 ducted. Besides, we only used WallaMe as an example to
1140 show the effectiveness of our system on real AR applications.
1141 In the future, we plan to evaluate our system for more AR
1142 applications and study how behaviors of different AR applica-
1143 tions influence the performance of our attackmodel.
1144 In our testbed, considering most location-based AR
1145 applications are designed for outdoor scenarios, we only
1146 tested our system in outdoor environments. In future work,
1147 we plan to implement our system for indoor AR applica-
1148 tions that has indoor localization and computer vision tech-
1149 niques. Moreover, we will study using machine-learning
1150 techniques to improve the accuracy and robustness of loca-
1151 tion detection for real AR applications.

1152 8 RELATED WORK

1153 Mobile Augmented Reality. The basic idea of augmented reality
1154 was proposed in the 1960s [9], [45]. Since the 1990s, research-
1155 ers have become increasingly interested in this area, and
1156 many AR devices and frameworks have been proposed to

1157overcome challenges to tracking and registration in the hopes
1158of properly aligning virtual and real objects, user interfaces
1159and human factors, and auxiliary sensing devices. The
1160increasing capabilities of mobile devices, affordable high-
1161speed Internet access, and breakthroughs in computer vision
1162and cloud computing have only recently made AR a reality.
1163Many mobile augmented reality (MAR) applications have
1164been designed and implemented towards the following
1165demands: 1). Tourism and navigation [12], [19], [20], [21]; 2).
1166Advertisement [23], [34]; and 3). Entertainment [38]. In [20],
1167[21], researchers propose aMAR prototype for campus explo-
1168ration. The application can display information about sur-
1169roundingswhile users arewalking.
1170Augmented Reality Security. Lately, several researchers
1171have focused on the security, privacy and safety concerns
1172associated with AR system [14], [25], [43]. However, most of
1173the existing publications are focused either on input privacy
1174[22], [37], [41] or output safety [25], [26], [27]. Only a few pub-
1175lications [11], [40], [46] are addressing output privacy of AR
1176system. Different from existing works, we point out a novel
1177side channel that allows attacker to track an AR user even if
1178the network traffic is encrypted.
1179Fingerprinting and Traffic Analysis. There is a large body of
1180research on the side-channel attack on encrypted network
1181traffic for traditional website [8], [36], [42]. In [36], the
1182authors evaluate a state-of-the-art method for detecting a
1183website and conclude that webpage detection is infeasible.
1184X. Cai et al. [8] proposed an attack method that can guess
1185which of 100 web pages a victim was visiting with an accu-
1186racy of at least 50 percent. A more recent work [42] shows
1187that it is possible to identify encrypted video streams in
1188high precision. Besides website information, traffic analysis
1189can also be used to infer application-specific sensitive infor-
1190mation, such as health conditions [33], or other contextual
1191information [13]. A recent work [32] is proposed to detect
1192AR users’ locations by monitoring the network throughput.
1193However, their solution only considers an small area (three
1194locations) and involves much training cost. Prior works also
1195cover mitigations [31], [49] and counter-mitigations [17].
1196Location Leakage Through Sensory Data. In the past a few
1197years, researchers did a lot of works on inferring locations
1198using various types of sensory data and side channel infor-
1199mation [16], [30], [39], [47]. For example, Liang et al. pro-
1200posed a system to infer the locations of a user using motion
1201sensors [30]. However, their system requires pre-collecting
1202enough training data from the same user for the same path.
1203Therefore, their system can fail to work as long as the user
1204change the movement behavior. Besides using sensory data
1205from a single source, researchers also seek to predict the
1206next location of a user using multiple sensors and context
1207information. For instance, Do et al. try to predict the next
1208location of the user using current context consisting of cur-
1209rent location, time, application usage, and etc. [16]. How-
1210ever, such a model can only work when the behaviors of the
1211user is relatively stable. To reduce the impact of dynamic
1212behaviors of a user, Tiwari et al. design an attack model that
1213can infer location-related information of a user using the
1214network traffic when the user is using Google Map [47].
1215However, they can only provide good performance on path
1216detection over the time while fail to detect the real-time
1217location of a user. Compared with existing work, our system
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1218 does not need to collect any training data from the target
1219 user. In addition, our attack model does not rely on any con-
1220 sumption on the behaviors of the victim. Moreover, com-
1221 pared with existing works that also leverage network
1222 traffic, our system is specifinally designed for AR applica-
1223 tions and can achieve better system performance on single
1224 location detection in real time.

1225 9 CONCLUSION

1226 The booming of third-party SDKs allows the developer to cre-
1227 ate many interesting location-based AR applications. How-
1228 ever, most users and application developers are unaware of
1229 the risk of potential location privacy leakage of their applica-
1230 tions. Unlike smartphone where you can control when to turn
1231 on or off the sensors and applications, the mobile AR device
1232 continuously receives inputs from the environment through
1233 multiple sensors and the network. In this paper, we develop a
1234 novel user location tracking system – ARSpy, which could
1235 achieve accurate and involuntary tracking of the target by
1236 only monitoring the network throughput. Our real-world
1237 attack experiments on the Android platform show that our
1238 attack method achieves high localization accuracy and the
1239 attacker can recover the moving trajectory of the victim with
1240 high possibility. We have also proposed 3 mitigation mecha-
1241 nisms to mitigate such threats. Our study is expected to urge
1242 AR application developers to revise their geolocation trans-
1243 mission protocol and, more importantly, serve as a call for
1244 more attention from the application user and AR SDK design-
1245 ers to have the full knowledge of the potential risk brought by
1246 the location-basedAR applications.
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