
EXTENDED BERKELEY PACKET FILTER (EBPF) – THE NEW SWISS KNIFE
FOR CYBERSECURITY EDUCATION

Si Chen and Liu Cui

Computer Science Department
West Chester University of Pennsylvania

{schen, lcui}@wcupa.edu

ABSTRACT
It is very challenging to do hands-on projects involving
complex Linux kernel modification in cybersecurity
courses, such as pawning a Linux kernel and hooking
system calls. To solve this problem, we have developed a
cybersecurity learning system named BadgerCTF+, which
leverages the Extended Berkeley Packet Filter (eBPF)
technology to support just-in-time kernel hooking. eBPF
is a kernel technology that allows programs to run in the
kernel land without changing the kernel source code or
adding additional modules. With BadgerCTF+, we can
develop various hands-on cybersecurity labs, including
system calls and processes hijacking, attacking interrupts,
and kernel tracing. While the BadgerCTF+ was initially
developed for cybersecurity courses, it can also be used
for network courses to learn how Internet technologies
work, such as network monitoring, route tracing, Border
Gateway Protocol (BGP), packet inspection, and network
performance analysis.

KEY WORDS
eBPF, cybersecurity, Linux, kernel

1. Introduction

Linux has emerged as a widely used platform for teaching
cybersecurity topics. Its open-source software base and
widely available development tools make it easy for
students to access its internals. It provides real-world code
examples and thereby also enhances students'
programming skills that can be immediately applied in the
workforce after graduation. The kernel programming
projects provide crucial hands-on experience for helping
the student understand operating system concepts and
advanced cybersecurity topics such as system calls,
process hook, interrupt, and kernel memory management.
However, developing a pedagogically-effective
programming project in the context of a complex Linux
kernel codebase can be a challenge [1]. This is because
the Linux kernel has been developed and maintained for
more than 30 years and is already settled in design. The
sheer size of the kernel system makes it difficult to
understand. The production operating systems are also not
primarily designed as teaching tools -- any changes
students make might break the whole system [2].

Therefore, designing lab activities involving the Linux
kernel programming at ring 0 (e.g., the kernel land) has
been a challenging problem in cybersecurity education. A
common approach is to develop a modded device driver
module called Loadable Kernel Module (LKM) and insert
it into the Linux kernel. Although useful for
demonstrating some concepts, these approaches are
complicated to build and maintain. Moreover, to fully
understand the modded driver’s code, students need to
have the background knowledge of Linux device driver
APIs and Linux kernel subsystems and must be fluent in
C programming.

The main contribution of our work and the main
difference separating our work from other work is how
we apply the eBPF technology to Linux kernel
programming. We have developed a Docker-based
cybersecurity learning system (similar to [3]) named
BadgerCTF+, consisting of labs and hands-on projects for
each essential topic of the Linux kernel, including system
calls, interrupt-descriptor table (IDT), SMEP/SMAP, use-
after-free (UAF) vulnerability. The construction is then
compiled into container files for Docker to run on our
server.

2. Background

2.1 eBPF

Berkeley Packet Filter (BPF) was first developed in 1992.
It is a virtual machine (VM) in the Linux kernel, allowing
a privileged user to load and run bytecode safely in the
kernel and monitor some chosen events. Since version
3.18 of the Linux kernel, the BPF VM has been extended
with a new name eBPF(extended BPF). In order to trigger
a BPF program, one needs to attach it to one or more
probes (e.g., kprobe or uprobe).

Figure 1: eBPF Components

Figure 1 shows a high-level diagram of the eBPF
components. By allowing to run sandboxed programs
within the operating system, teachers can run eBPF
programs to add additional capabilities to the operating
system at runtime. The operation system then guarantees
integrity and safety as if natively compiled with the aid of
a JIT (Just-in-Time) compiler and verification engine.

2.2 Kprobes and Uprobes

Kprobes (kernel probes) and uprobes (user probes) are
mechanisms in the Linux kernel to dynamically set
breakpoints at any desired address. You can attach the
probe in either the kernel space (ring 0) or in user space
(ring 3), specifying a handler function to be invoked when
the breakpoint is hit.

3. System Overview

Figure 2: BadgerCTF+ System Architecture

We maintain that eBPF is a natural fit for a cybersecurity
learning system, for several reasons:

• Hooking is done in the kernel space, thus is able
to hook high privilege processes.

• The verifier automatically verifies the eBPF code
before being inserted to the kernel, and prevent
programming errors which may cause kernel
crashes, hangs, or instability.

• eBPF programs can be triggered by user or
kernel land probes, allowing a single mechanism
to intercept all system events.

• eBPF is able to provide context about the events,
including arguments, process id, user id,
timestamp and more.

• eBPF supports event filtering in the kernel,
saving the need to send and parse irrelevant
event in the userspace (ring 3).

• It is possible to use eBPF to read and write data
from kernel space to user space memory, hence
arguments can be read and even changed.

• System overhead is relatively small as all the
eBPF code are compiled to native code and are
running inside kernel space.

• eBPF is now maintained as part of the Linux
kernel and new features are constantly being
added to it.

Because of the aforementioned reasons, we choose to
build our cybersecurity learning system – BadgerCTF+ on
top of eBPF. Figure 1 shows the system architecture of
the BadgerCTF+ system. The core part of the
BadgerCTF+ system is a pre-configured docker container.
Users (student and teacher) can connect to the

BadgerCTF+ system via a secure shell (SSH) program.
Once connected via SSH, the BadgerCTF+ system will
automatically spawn a new container and let the user
attach to it. To make sure user’s homework can be saved
and synchronized, BadgerCTF+ will automatically mount
user’s home folder to the container. Once user disconnect
via SSH, that container will be destroyed.

We use eBPF to build several kernel related security labs.
These Linux kernel programming labs are developed via
pseudo-C code and compiled into eBPF byte code via
LLVM compiler. Student and teacher do not need to use
eBPF directly, instead, they can use the Python script as
an abstraction layer to interact with the built-in eBPF
program.

Our lab’s Python script will create a new system-level
hook to gather information in the kernel land. Once the
desired hook has been identified, the eBPF program can
be loaded into the Linux kernel via the eBPF system call.
This is typically done using one of the available eBPF
libraries. As our lab program is loaded into the Linux
kernel, it passes through two steps before being attached
to the request hook:

1. Verification: As shown in Figure 2, the
verification process ensures that the eBPF
program is safe to run. The verifier will validate
that the program meets several conditions,
including:

a. The process loading the eBPF program
holds the required privileges (Note that
inside the BadgerCTF+ docker
container, users have the root privileges
by default).

b. The program does not crash the system.
c. The program does not contain any

infinite loop and always runs to
completion.

2. JIT Compilation: The Just-in-Time (JIT)
compilation process translates the generic
bytecode of the program into the machine
specific instruction set to optimize the overall
running performance of the program. This makes
our eBPF programs run as efficiently as natively
compiled kernel code or as code inserted as a
Loadable Kernel Module (LKM).

To return the result back to user space (ring 3), our system
utilized a concept named eBPF maps. eBPF maps allows
sharing date between our lab’s eBPF kernel programs and
also between kernel (ring 0) and user-space (ring 3)
applications. The eBPF maps are generic data structure
for storage of different data types and are treated as binary
blobs. We specify the size of the key and the size of the
value at map-creation time inside our lab’s eBPF program.
The map handles are file descriptors and multiple maps
can be created and accessed by multiple users/programs at
the same time.

User Space
(Ring 3)

Kernel Space
(Ring 0)

Kernel Related
Security Labs

Execute

Verifiy

Result

BadgerCTF+

4. Comparison of Techniques for Teaching
Linux Kernel

Over the years, several techniques were suggested and
implemented for teaching Linux kernel concept. While
some of these approaches were shown to have good result
for building class demo, they also suffer from developing
student project with moderate difficulty. Table 1 provides
a summary of the result of this comparison. By relying on
the eBPF technology of the Linux kernel, BadgerCTF+
achieves some of the desired requirements. BadgerCTF+
is able to trace almost any part of the Linux system kernel.
It can log Linux API, native library functions, system
calls and internal kernel functions. By collection all
context levels of an application in a unified manner,
BadgerCTF+ is able to provide a bunch of programming
interface which can be directly used by the student for
secondary development.

5. Lab Examples: Detecting Kernel Rootkit

In this section, we demonstrate how to design a lab using
eBPF technology for CSC 471: modern malware analysis
class. The topics is for detecting kernel rootkit. It is
difficult to teach topics like kernel rootkit due to it
complex nature. Before introducing eBPF into
BadgerCTF+ system, we mainly use Volatility [4] for
analysing the memory dump file of the malware. The
limitation of using Volatility is student can only perform
static analysis on the memory dump file. With eBPF,
student can perform both static analysis and dynamic
analysis of the malware sample on our BadgerCTF+
system.

5.1 Kernel rootkit and hooking

A kernel rootkit is a malicious software that runs inside
the kernel space to create a backdoor to a system without
being detected. It can be de deployed onto a system via a
worm, or an attacker can use a kernel vulnerability.

Because kernel rootkit involves compromising the kernel,
they can basically do anything, including avoiding
detection by other software. A common technique of
Linux kernel rootkit is to overwrite the function addresses
inside the syscall table. Syscalls are the main way
userland applications interact with the kernel and
underlying hardware. By hooking (or ‘altering’) the
syscall table, rootkit can change the data reported by the
kernel to hide anything incriminating, such as its own
process or a network connection to a command and
control (C&C) server.

In this lab, we use an open-sourced LKM rootkit named
Diamorphine [5] as an example. It hooks three syscalls:
Kill, Getdents and Getdents64 to hide itself.

5.2 eBPF syscall hooking program

The eBPF programs used in our cybersecurity lab are
event-driven and it will be triggered when the kernel or an
application passes a certain hook point. There are several
pre-defined hooks which include system-calls, function
entry/exit, kernel tracepoints, and network events.

Figure 3: Creating an eBPF Hook for System Call

If a predefined hook does not exist for a particular need,
we should use kernel probe (kprobe) or user probe
(uprobe) to attach eBPF programs and retrieve the data
(Shown in Figure 3).

In this lab, we will attach a kprobe to the Kill syscall
function. Since eBPF has the ability to record stack traces
of a function call and shows what functions were called in

 Monitor all
system

interactions

No system
modification

No application
modification Easy to develop Safe

Loadable Kernel
Module (LKM) N N Y N N

Application
Modification N Y N N N

Library Injection N Y Y Y N

Kernel eBPF
(BadgerCTF+) Y Y Y Y Y

Table 1: Comparison of Techniques for Teaching Linux Kernel

both user space and the kernel space, we can therefore
detect when a function or syscall has been hooked by
monitoring any suspicious function insertion. Our eBPF
lab program is able to record the stack trace from all Kill
syscalls and print it out afterward.

5.3 Rootkit detection program

Student can use either Libbpf or BPF Compiler Collection
(BCC) (both are powerful set of tools which uses eBPFs)
for creating resourceful rootkit detection program based
on kernel tracing. The main programming language for
our lab is C, but student can also choose to use Lua, C++,
Python or Rust. The Libbpf acts as an eBPF program
loader. It can load, checks and relocates eBPF programs,
sorting out maps and hooks. In our lab guidance sheet, we
provide the template code using libbpf-bootstrap. Student
needs to figure out how to implement the handle_event
function to use the provided eBPF syscall hooking
program and read the result.

For this lab, student will quickly notice that a new stack
frame was inserted in between two expected stack traces
which indicates that the syscall had been hooked by the
Diamorphine rootkit.

6. Lab Examples: Use eBPF in network class

In this section, we demonstrate how to design a lab using
eBPF technology for CSC 335: Data Communication and
Networks, and CSC 302: Computer Security. Network
labs are used to be a challenge for us due to the number of
machines and students we have. With eBPF, connected
containers are created, so more network and large scale
network labs can be done.

5.1 Socket filtering

One of the current labs in CSC 335: Data Communication
and Networks is socket programming where students
write python programs for one server and multiple clients
services.

As the next step, in CSC 302: Computer Security,
students could implement their own socket programs in
BadgerCTF+ and enable the socket filter manually. With
eBPF, network traffic can be filtered by query name, DNS
name, and address. [6] In addition, students implement
eXpress Data Path (XDP) to prevent distributed denial of
service (DDoS) attack. In order to do so, students provide
programs of the “BPF_PROG_TYPE_XDP” type to a
network interface. Then, the kernel will execute the
programs on received packets before networking stack
starts processing them.

5.2 TCP Congestion Control

TCP congestion control is another place to implement the
lab. In CSC 335: Data Communication, TCP is introduced

in detail as one protocol in the network layer. Before
badgerCTF+ is implemented, the three-way handshake,
re-transmission, and TCP header information are
examined by students using Wireshark. The TCP
congestion control is only introduced in the lecture,
without a comparison among different TCP congestion
control algorithms.

To include research in the class and inspire students
solving everyday problems, TCP congestion control using
eBPF is adopted. In this lab, TCP Tahoe algorithm is
explained in detail with implementation, and other TCP
congestion control algorithms such as new Reno and
Vegas are provided. Students choose at least two TCP
congestion algorithms to implement and compare the
performance different network traffic setting. Then,
students write a lab report to explain the observation.

7. Conclusion

In this paper, we showcased how eBPF, a code
augmentation framework offered by the Linux kernel, can
be used for cybersecurity and network education. To
prove the effectiveness of the idea, we develop an eBPF
based learning system named BadgerCTF+. Our lab
examples indicated that eBPF can be used for teaching
Linux kernel programming courses malware analysis. The
in-kernel measurement via code augmentation ca be used
to gather data to feed toolkits for detecting kernel rootkit.
We also show that eBPF can be used for designing labs
for network courses.

References:

[1] O. Laadan, J. Nieh, en N. Viennot, “Structured linux
kernel projects for teaching operating systems concepts”,
in Proceedings of the 42nd ACM technical symposium on
Computer science education, 2011, 287–292.

[2] R. Hess en P. Paulson, “Linux kernel projects for an
undergraduate operating systems course”, in Proceedings
of the 41st ACM technical symposium on Computer
science education, 2010, 485–489.

[3] C. E. Irvine, M. F. Thompson, M. McCarrin, en J.
Khosalim, “Live lesson: Labtainers: A docker-based
framework for cybersecurity labs”, in 2017 USENIX
Workshop on Advances in Security Education (ASE 17),
2017.

[4] M. H. Ligh, A. Case, J. Levy, en A. Walters, The art
of memory forensics: detecting malware and threats in
windows, linux, and Mac memory. John Wiley & Sons,
2014.

[5] P. Krishnamurthy, H. Salehghaffari, S. Duraisamy, R.
Karri, en F. Khorrami, “Stealthy rootkits in smart grid
controllers”, in 2019 IEEE 37th International Conference
on Computer Design (ICCD), 2019, bll 20–28.

[6] The Linux Kernel, “Linux Socket Filtering aka
Berkeley Packet Filter (BPF)”,
https://www.kernel.org/doc/html/latest/networking/filter.h
tml, accessed on Feb 2nd, 2022.

