
ADA: An Application-Conscious Data Acquirer for
Visual Molecular Dynamics

Abstract
Visual molecular dynamics (VMD) has been widely used

by numerous molecular dynamics (MD) applications to ani-

mate and analyze the trajectory of an MD simulation. One

challenge faced by domain scientists, however, is how to

filter out inactive data (i.e., data irrelevant to the subject)

from the enormous output of an MD simulation. To solve

it, we propose ADA (application-conscious data acquirer),

a light-weight file system middleware that can perform an

application-conscious data pre-processing. It provides host

CPUs with only data needed instead of an entire raw dataset.

Next, we implement an ADA prototype, which is then in-

tegrated into three computing platforms: an SSD server, a

nine-node OrangeFS storage cluster, and a fat-node server

with 1 TB memory. Further, we evaluate ADA by running

a computational biology application on the three platforms.

Our experimental results show that compared to a traditional

file system an ADA-assisted file system improves data pro-

cessing turnaround time by up to 13.4x and reduces up to

2.5x memory usage for data rendering. Besides, ADA allows

the 1TB memory server to render more than 2x VMD graphs

while saving 3x energy consumption.

CCS Concepts • Software and its engineering → File
systems management; Secondary storage.

Keywords File System Middleware, Data Layout, Memory

Utilization, Energy Conservation, VMD

ACM Reference Format:
. 2021. ADA: An Application-Conscious Data Acquirer for Visual

Molecular Dynamics. In ,. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/1122445.1122456

1 Introduction
Visual molecular dynamics (VMD) is a popular molecular

graphics program designed for modeling, visualization, and

analysis of biological systems such as proteins, nucleic acids,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ICPP ’21, ICPP 21,
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

and lipid bilayer assemblies [11]. It has been widely adopted

by numerous molecular dynamics (MD) applications as a

graphical front end for rendering and animating molecule

undergoing simulations on a remote computer. MD applica-

tions span a wide range of scientific domains, from VASP

for chemical materials [14], XcrySDen for crystallines [13],

to NAMD for computing and structural biology [17]. These

applications normally generate a huge amount of simulation

data for a visualization tool like VMD to visualize and ana-

lyze. For example, data collected at the European Molecular

Biology Laboratory demand a storage capacity of 160 PB as

of late 2018 [4]. In addition to holding raw data for CPUs

to solve various computational problems, extra storage is

needed to accommodate processed data and intermediate

data from separate computational steps [3].

The huge amount of data generated by various MD ap-

plications plus their demands for a high-performance and

energy-efficient storage system put a tremendous pressure

on traditional rotation-based hard disk drives (HDDs). Since

non-volatile memory (NVM) technologies (e.g., flash mem-

ory) can offer a much better I/O performance and energy-

efficiency [7], NVM-based solid state drives (SSDs) started

to replace HDDs in a wide spectrum of data-intensive ap-

plications [31]. Although SSDs noticeably improve the per-

formance of these applications, they are still relatively ex-

pensive compared with HDDs. Besides, we observed that in

many MD applications only a portion of a raw dataset are

interested in or relevant to the study subject of a domain

scientist. These data are called active data as they need to be

frequently accessed, and then, analyzed by host CPUs. The

rest part of the raw dataset are called inactive data, which are

either seldom visited or simply abandoned. This observation

plus the higher price of SSD motivate us to employ a cost-

effective hybrid storage systemwith both HDDs and SSDs for

MD applications. In such a hybrid storage system, relatively

expensive SSDs are employed to store active data, whereas

cheaper HDDs are used to hold inactive data. Inactive data

is also called MISC data in this paper (see Section 2.1).

In addition to the need of data layout optimization, we

found that many MD applications also require a graphical

data pre-processing procedure so that active data can be

efficiently retrieved before they are analyzed by host CPUs.

For example, GROningenMAchine for Chemical Simulations

(GROMACS) [25], anMD application designed for simulation

of proteins, uses VMD to read the trajectories of atoms and

then render them into a 3D animation. All raw data (i.e., tra-

jectories of atoms and molecules) are compressed in order to

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

save storage space. In this MD application, domain scientists

are only interested in protein data (i.e., active data) as their

goal is to investigate the behavior of proteins. However, the

volume of protein data is less than 50% of that of the entire

raw dataset as the rest part of the raw dataset is composed of

liquid and ligands data (i.e., inactive data) [25]. And yet, the

entire raw dataset needs to be decompressed in memory first,

and then, the inactive data can be filtered out. The fact that

a noticeable percentage of data in a raw dataset are inactive

data can also be inferred from other applications [22] [20]

[30] [15]. How to separate active data from noticeably large

inactive data in the first place so that only the former can

be provided to host CPUs for a further analysis becomes a

challenge faced by the domain scientists. We found that this

challenge exists in a wide range of MD applications such as

VASP [14], XCrySDen [13], and LAMMPS [18] when they

have visualization needs. The existing approach to extract-

ing active data from a raw dataset degrades the performance

of a compute node as it causes three issues: (1) each time a

raw dataset is acquired a sequence of data pre-processing

steps need to be performed in order to generate active data,

which is a time-consuming repeated effort; (2) a large mem-

ory space is needed to store the original compressed raw

data, the decompressed raw data, and the active data, which

wastes the memory of a compute node because inactive data

should not be fetched into memory in the first place; (3) pre-

cious CPU time of a compute node is wasted as it is used

to perform a very simple data pre-processing procedure in-

stead of sophisticated operations such as convolutions or

high-dimensional matrix multiplications (see Fig. 3a).

To solve this common challenge of MD applications, in

this paper we propose a light-weight file system middleware

called ADA (application-conscious data acquirer) dedicated

to VMD. ADA sits between VMD and an existing file system

to conduct an application-conscious data pre-processing on

a storage node. In particular, based on the I/O access pattern

of an MD application, ADA is able to categorize its raw data

into multiple groups with each having a distinct tag. Thus,

ADA can provide host CPUs with only data needed instead

of an entire raw dataset. As a result, only active data will be

transferred from a storage node to a compute node so that

all three issues mentioned above can be avoided (see Fig. 3).

Further, we implement an ADA prototype, which is then

integrated into three computing platforms: an SSD server, a

nine-node OrangeFS storage cluster, and a fat-node server

with 1 TB memory. Finally, we use a biology MD application

called GPCR (G-Protein Coupled Receptor) [10] running on

the three platforms to evaluate the efficacy of ADA. Our

experimental results show that compared to a traditional

file system an ADA-assisted file system improves data pro-

cessing turnaround time (see Section 2.1) by up to 13.4x

and reduces up to 2.5x memory usage for data rendering

on the SSD server. Besides, ADA allows the fat-node server

with 1 TB memory to render more than 2x VMD graphs

Table 1. Data Components of Three .xtc Files

Number of

frames

Compressed file size (MB) Protein data

fraction (%)Complete data Protein data

626 100 44 44

1,251 200 98 49

5,006 800 348 43.5

while saving more than 3x energy consumption. Although

ADA is built for VMD, its framework can be extended to

support other computational science applications where a

similar data pre-processing challenge exists. As long as an

application can provide the structure of its raw data in a file

format, ADA can acquire an understanding of this structure

through analyzing the structure file. Essentially, ADA is an

application-conscious data pre-processing middleware that

can be integrated into an existing file system.

Main contributions of this paper include (1) a light-weight

file system middleware called ADA is proposed to largely

improve the performance, memory utilization, and energy-

efficiency of MD applications; (2) an ADA prototype is im-

plemented, and then, integrated into three real-world com-

puting platforms; (3) a comprehensive experimental study is

provided to fully evaluate the efficacy of the ADA prototype.

The rest of the paper is organized as follows. Section 2

provides the background andmotivation of this research. The

design and implementation details of ADA are presented

in Section 3, which is followed by an evaluation of ADA

shown in Section 4. Section 5 summarizes the related work.

Finally, Section 6 concludes this paper by pointing out a

future direction of this research.

2 Background
In this section, we first briefly introduce VMD processes in

visualizing data generated from a biology MD application

called GPCR (G-Protein Coupled Receptor) [10]. Next, we

explain how an ADA-assisted approach performs VMD data

pre-processing differently from a traditional way.

2.1 VMD in the GPCR MD Application
VMD can act as a graphical front end for an external MD

application by displaying and animating a molecule under-

going simulation on a remote computer. The challenge of

operating VMD visualization on an ordinary cluster with

limited memory capacity is that it needs to handle a large

amount of data. Recently retrieved frames should be evacu-

ated from the limited memory to make room for subsequent

phases of frames. Frequent data swapping operations cause

a low data hit rate under random frames accesses (e.g., re-

playing the frames back and forth), which further leads to a

non-fluent VMD animation playback.

The goal of the GPCR MD application is to facilitate high-

resolution structure-function studies on medically important

proteins known as G-protein coupled receptors (GPCRs) by

2

making all data publicly available. In 2016, Huaet al.deter-
mined and analyzed the high-resolution atomic structure of
human cannabinoid receptor 1 (CB1), which is also known as
the marijuana receptor. These new �ndings provide insight-
ful clues to understand why some drugs that interact with
this receptor have had unexpectedly complex and sometimes
harmful e�ects, while the utility of the crystal structure may
provide inspiration for drug design toward re�ning e�cacy
and avoiding adverse e�ects [10].

Two major types of �les employed by VMD in the GPCR
MD application are .xtc (i.e., XTrkCAD) �les and .pdb (i.e.,
protein data bank) �le. While a .xtc �le contains compressed
trajectories of atoms and molecules, a .pdb �le includes the
structure of a protein. The data components of three sample
trajectory �les used in the GPCR MD application [10] are
summarized in Table 1. From this table, one can see that
the percentage of protein data in these three trajectory �les
varies from 43.5% to 49%. The implication is that more than
half of the data (i.e., MISC data) stored in a .xtc �le need to be
�rst decompressed and then abandoned. Note that one .pdb
�le may contain the structure of one protein or structures of
multiple proteins. One .xtc �le is guided by a corresponding
.pdb �le. Besides, one .pdb �le can guide multiple .xtc �les,
which represent di�erent atom motion phases. Fig. 1 shows
a frame of 3D graph of the entire raw data, protein data, and
MISC data of eight .xtc �les, respectively. Fig. 1b is modi�ed
(or �cleaned�) from Fig. 1a so that only protein data are
displayed. Fig. 1c shows the liquid that surrounds the protein.

Now we explain how VMD processes these two types of
�les to generate 3D animations for proteins. Fig. 2 illustrates
a data processing procedure embedded in the source code
of VMD. The procedure consists of two phases: data pre-
processing and data rendering (i.e., data replaying). In phase
one, VMD �rst checks a protein data bank �le to retrieve the
protein structure. Guided by the protein structure, VMD is
then able to retrieve compressed trajectories from a corre-
sponding .xtc �le. Once the .xtc �le is loaded into memory,
VMD requires an additional memory space to accommodate
uncompressed trajectories, which are interpreted as an array
of frames. Finally, VMD rebuilds the 3D animation replay
based on these frames. The total time taken between the
retrieval of �les (i.e., .xtc and .pdb) from storage and the
completion of 3D graphics rendering is de�ned as data pro-
cessing turnaround time in this paper. It is the sum of data

pre-processing time and data rendering time (see Fig. 2).
This time-consuming decompression and MISC data �lter-
ing procedure becomes a constant burden when biologists
repeatedly study the behaviors of proteins.

Figure 2. VMD data processing procedure.

2.2 VMD Data Processing Work�ow

In this section, we �rst explain how a traditional VMD data
processing procedure works on a cluster with both stor-
age nodes and compute nodes. Next, we present our ADA-
assisted VMD data processing work�ow.

Fig. 3a shows a traditional VMD data processing work-
�ow. A parallel �le system like PVFS [8] is running on top
of each storage node. While some storage nodes employ
HDDs, others utilize SSDs. The entire compressed raw data
are transferred into a group of compute nodes through a
high-performance network architecture like In�niBand. Af-
ter receiving the raw data, the compute nodes �rst need to
perform a data pre-processing including decompressing raw
data and scanning for active data. Finally, all active data are
fed into VMD to generate 3D animations. Note that the raw
data are compressed and then transferred to compute nodes.
Thus, raw data transferring is not a performance bottleneck.
As we mentioned before, data pre-processing in compute
nodes becomes a huge burden as it wastes precious CPU
time and memory space of a compute node. Unlike a tradi-
tional VMD data processing scheme, an ADA-assisted VMD
exploits the computing resources of storage nodes to per-
form data pre-processing. Fig. 3b illustrates how it works.
First, storage nodes are logically divided into two groups:
one PVFS �le system manages all storage nodes with HDDs
and another PVFS �le system operates on all storage nodes
with SSDs. A prototype of ADA is implemented as a middle-
ware, which directly communicates with the two PVFS �le
systems. Once a raw dataset is passed to ADA, it starts to
perform a data pre-processing procedure, after which only
decompressed active data will be transferred to compute
nodes. Consequently, compute nodes can concentrate on the

(a) Original raw data (b) Protein dataset (c) MISC dataset

Figure 1. VMD molecular structure rendered in one 3D graph frame.

3

	Abstract
	1 Introduction
	2 Background
	2.1 VMD in the GPCR MD Application
	2.2 VMD Data Processing Workflow

	3 Design and Implementation of ADA
	3.1 Architecture of ADA
	3.2 Data Pre-Processor
	3.3 I/O Determinator
	3.4 Implementation of ADA

	4 Evaluation of ADA
	4.1 Evaluation on an SSD Server
	4.2 Evaluation on a Small Cluster
	4.3 Evaluation on a Fat-Node Server

	5 Related Work
	6 Conclusions
	References

