Extended Berkeley Packet Filter (ebpf)
The New Swiss Knife for Cybersecurity Education

Si Chen and Liu Cui
Computer Science Department
West Chester University of Pennsylvania
{schen, lcui}@wcupa.edu

Presentation Outline

= [ntroduction

= Background
» System Overview
= Comparison

= Lab Examples

Page = 2

Introduction

creater: J4sp3r (pwnkit) redeveloped by Dr. Si Chen (quakeO@day@wcupa)
root@lc4a6075c99c: /workdir # [J

= [t is very challenging to do hands-on projects involving complex Linux
kernel modification in cybersecurity courses, such as pawning a Linux
kernel and hooking system calls.

= To solve this problem, we have developed a cybersecurity learning
system named BadgerCTF+.

— Leverages the Extended Berkeley Packet Filter (éBPF) technology to support
just-in-time kernel hooking.

= With BadgerCTF+, we can develop various hands-on cybersecurity labs,
including system calls and processes hijacking, attacking interrupts, and
kernel tracing.

Page = 3

The “Ring”

/ Ring 2 \ Least privileged

."'/ N\ fend
Ring 1

f Ring 0 | system call >

| WinAPI (Windows)

| Kernel I

‘ a

I. ..

! ! Most privileged

Device drivers

\ . 2 4
\ Device drivers /

~._ Applications _~

— p—

Page = 4

Background

ropli++] = (size_t)get_root;
ropl[i++] = oxff{ffff££31063694; [/ _swapgs: pop rbp: ret:

[i++] = 0;
rortirs - orrf| The kernel programming projects provide crucial hands-on experience

[i++] = (si : .
rtinl - user] fOr helping the student understand operating system concepts and
rop[i++] = user] . .
i - ueer] @dvanced cybersecurity topics such as system calls, process hook,
rop[i++] = user] :

interrupt, and kernel memory management.

for(int 1 = 0; I < 30, LtT)

{
fake_tty_operations[i] = OxFFFFFFFF8181BFC(C5;
}
fake_tty_operations[0]
fake_tty_operations[1]
fake_tty_operations[3]

oxffffffff810635f5; //pop rax; pop rbp; ret;
(size_t)rop;
OxFFFFFFFF8181BFC5; // mov rsp,rax ; dec ebx ; ret

int fdl = open("/dev/babydev", O_RDWR);

int fd2 = open("/dev/babydev”, 0_ROWR)i) T)eveloping a pedagogically-effective programming

ioctl(fdl, 0x10001, 0x2e0);

close(fd1); project in the context of a complex Linux Kkernel
int fd_tty = open("/dev/ptmx", 0_ROWRI)] codebase can be a cha]lenge:

size_t fake_tty_struct[4] = {0};

read(fd2, fake_tty_struct, 32); 1. Linux kernel has been developed and maintained for
fake_tty_struct[3] = (size_t)fake_tty_o . . .
write(fd2, fake_tty_struct, 32); more than 30 years and 1s already settled in design.
char buf (0x8] = {0}; 2. The sheer size of the kernel system makes 1t difficult

write(fd_tty, buf, 8);

to understand.

3. The production operating systems are also not
primarily designed as teaching tools -- any changes
students make might break the whole system

return 0;

Page = 5

Background

The BSD Packet Filter:
A New Architecture for User-level Packet Capture®

Steven McCanne! and Van Jacobson'!
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, CA 94720
mccanne(@ee.lbl.gov, van(@ee.lbl.gov

December 19, 1992

Abstract

Many versions of Unix provide facilities for user-level packet
capture, making possible the use of general purpose work-
stations for network monitoring. Because network monitors
run as user-level processes, packets must be copied across the

kemel/user-space protection boundary. This copying can be

SunOS, the Ultrix Packet Filter{2] in DEC"s Ultrix and Snoop
in SGI's IRIX

T'hese kemel facilities derive from pioncering work done at
CMU and Stanford to adapt the Xerox Alto ‘packet filter’ toa
Unix kernel[8]. When completed in 1980, the CMU/Stanford
Packet Filter, CSPF, provided a much needed and widely used
facility. However on today's machines its performance, and

Berkeley Packet Filter (BPF) was first developed in 1992. It is a virtual machine (VM) in the Linux kernel, allowing a
privileged user to load and run bytecode safely in the kernel and monitor some chosen events.

Since version 3.18 of the Linux kernel, the BPF VM has been extended with a new name eBPF(extended BPF). In order
to trigger a BPF program, one needs to attach it to one or more probes (e.g., kprobe or uprobe).

Page = 6

Background

/ User Space \ We maintain that eBPF is a natural fit for a cybersecurity learning
system, for several reasons:
H’;zrc’j‘:r's (Limited) C o Hooking is done in the kernel space, thus is able to hook high
privilege processes.
W — e The verifier automatically verifies the eBPF code before being
; oo r inserted to the kernel, and prevent programming errors which
e Fvents may cause kernel crashes, hangs, or instability.
e r N e eBPF programs can be triggered by user or kernel land probes,
8 allowing a single mechanism to intercept all system events.
m % o eBPF is able to provide context about the events, including
th PROG LOAD BPF MAP CREATE | = / arguments, process id, user id, timestamp and more.
o eBPF supports event filtering in the kernel, saving the need to
/-~ 1 T _f_/ 1 Y send and parse irrelevant event in the userspace (ring 3).
] " Rm; ‘ ’ e [tis possible to use eBPF to read and write data from kernel space
e N Buffers to user space memory, hence arguments can be read and even
i T T J Kprobes changed. . .
¢ o System overhead is relatively small as all the eBPF code are
Jr »| BPF VM (Native Code) [« compiled to native code and are running inside kernel space.
\—‘ o eBPF is now maintained as part of the Linux kernel and new
_Kermer ~/ features are constantly being added to it.

Page =7

System Overview

HespE, I- 'i EJ LI1F

Kernel Related .
Security Labs

]

f Lﬂl

Result i gl ~ xecute
User Space Kernel Space
(Ring 3) (Ring 0)

[

{0 D
] [F
O
N

docker

BadgerCTF+

The core part of the BadgerCTF+ system is a pre-configured docker container. Users
(student and teacher) can connect to the BadgerCTF+ system via a secure shell (SSH)
program.

Once connected via SSH, the BadgerCTF+ system will automatically spawn a new
container and let the user attach to it. To make sure user’s homework can be saved
and synchronized, BadgerCTF+ will automatically mount user’s home folder to the
container. Once user disconnect via SSH, that container will be destroyed.

Y

e

System Overview

awp& @ Verifiy

Kernel Related
Security Labs
Result ‘N‘ = @ Execute
User Space Kernel Space
(Ring 3) (Ring 0)

lIIII I

BadgerCTF+ docker

We use eBPF to build several kernel related security labs. These Linux kernel
programming labs are developed via pseudo-C code and compiled into eBPF
byte code via LLVM compiler. Student and teacher do not need to use eBPF
directly, instead, they can use the Python script as an abstraction layer to
interact with the built-in eBPF program.

West
Chester
Uun ty
Page = 9 E .

System Overview

unsigned int sk_run_filter(struct sk_buff *skb, \

soetpacket/packet h> struct sock_filter *filter, int flen)
{

<linux/filter.h>

struct sock_filter *fentry;
void *ptr;
OP_LDH (BPF_LD | BPF_.H | BPF_ABS) us2 A = 0;
OP_LDB (BPF_LD | BPF_B | BPF_ABS) u32 X = 0;
OP_JEQ (BPF_JMP | BPF_JEQ | BPF_K) u32 mem[BPF_MEMWORDS] ;
I

OP_RET (BPF_RET | BPF_K) 93? Emp;
int k;

struct sock_filter bpfcode[6] = { it pe;

OP_LDH, @, 0, 12 For

OP_JEQ, ©, 2, ETH_P_IP

OP_LDB, ©, 0, 23 e

OP_JEQ, ©, 1, IPPROTO_TCP }, (pc = @; pc < flen; pc++) {
OP_RET, ©, 0, © Hr fentry = &filter[pc];
OP_RET, 0, 0, -1, 3 i (fentry->code) {
BPF_ALU|BPF_ADD|BPF_X:
A += X;

I

int main(int argc, char **argv) s
{ BPF_ALU|BPF_SUB |BPF_X:
e A -=X;
sock = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); H
BPF_ALU|BPF_SUB|BPF_K:
(setsockopt(sock, SOL_SOCKET, SO _ATTACH FILTER, \ A -= fentry->k;
&bpf, (bpf))) {
perror("setsockopt ATTACH FILTER");
l-

>

2
BPF_ALU|BPF_MUL | BPF_X:
A *= X;

filter program@ring3

Page = 10

System Overview

Our lab’s Python script will create a new system-level hook to gather information
in the kernel land. Once the desired hook has been identified, the eBPF program
can be loaded into the Linux kernel via the eBPF system call. This 1s typically done
using one of the available eBPF libraries. As our lab program is loaded into the
Linux kernel, it passes through two steps before being attached to the request hook:

1. Verification: the verification process ensures that the eBPF program is
safe to run. The verifier will validate that the program meets several
conditions.

2. JIT Compilation: The Just-in-Time (JIT) compilation process translates
the generic bytecode of the program into the machine specific instruction
set to optimize the overall running performance of the program.

WeBPE
@ > @ Verifiy
Kernel Related
Security Labs -
< \ 2K
Result & %I D - 9 Execute
User Space Kernel Space
(Ring 3) (Ring 0)
Page = 11 .
N
BadgerCTF+ Socker

System Overview

To return the result back to user space
(ring3), our system utilized a concept
named eBPF maps.

Least privileged
[] ¢BPF maps allows sharing date between
our lab’s eBPF kernel programs and also

between kernel (ring0) and user-space

| (ring3) applications.

Most privileged

/ The eBPF maps are generic data structure

for storage of different data types and are

~._ Applications _

—— treated as binary blobs. We specify the
size of the key and the size of the value at
map-creation time inside our lab’s eBPF

program.
The map handles are file descriptors and
multiple maps can be created and
accessed by multiple users/programs at
Page » 12 the same time.

Comparison of Techniques for Teaching Linux Kernel

N N Y N N
N Y N N N
N Y Y Y N
Y Y Y Y Y

Table 1:
Comparison of
Techniques for
Teaching Linux
Kernel

Comparison of Techniques for Teaching Linux Kernel

By relying on the eBPF technology of the Linux kernel, BadgerCTF+ achieves some
of the desired requirements. BadgerCTF+ 1s able to trace almost any part of the Linux
system kernel. It can log Linux API, native library functions, system calls and internal
kernel functions. By collection all context levels of an application in a unified manner,
BadgerCTF+ is able to provide a bunch of programming interface which can be
directly used by the student for secondary development.

Lab Examples: Detecting Kernel Rootkit

Moo famrain) ACCESS T oF TORS

= A kernel rootkit is a malicious software that runs inside the kernel space to create a
backdoor to a system without being detected.

= |t can be de deployed onto a system via a worm, or an attacker can use a kernel
vulnerability.

= Because kernel rootkit involves compromising the kernel, they can basically do anything,
including avoiding detection by other software.

= A common technique of Linux kernel rootkit is to overwrite the function addresses inside the
syscall table.

= Syscalls are the main way userland applications interact with the kernel and underlying
hardware. By hooking (or ‘altering’) the syscall table, rootkit can change the data reported by
the kernel to hide anything incriminating, such as its own process or a network connection to
a command and control (C&C) server.

Page = 14

Lab Examples: Detecting Kernel Rootkit

.
3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk skoskoskosk sk skoskosko sk skosko sk sk skoskoskoskoskoskoskosk ko kosk sk sk ok sk sk sk sk sk k sk k sk sk sk sk k k

Hook mode: Usermode

Hook type: NT Syscall

Process: 668 (services.exe)

Victim module: ntdll.dll (0x7c900000 - 0x7c9af000)
Function: ZwQueryAttributesFile

Hook address: 0x7c900054

Hooking module: ntdll.dll

For CSC 471: modern malware
analysis class. The topics 1s for

detecting kernel rootkit.

Disassembly(0):

0x7c90d6f0 h88b000OOO MOV EAX, 0x8b

0x7c90d6f5 ba5400907c MOV EDX, 0x7c900054
0x7c90d6fa ffd2 CALL EDX It 1s difficult to teach topics like
0x7c90d6fc c20800 RET 0x8 . .

0x7c90d6F 90 NOP kernel rootkit due to it complex
0x7c90d700 h88c000000 MOV EAX, Ox8c

0x7c90d705 ba DB 0xba

0x7c90d706 0003 ADD [EBX], AL nature.

Disassembly(1):

0x7c900054 b204 MOV DL, 0Ox4

0x7c900056 eb04 JMP 0x7c90005c

0x7c900058 b205 MOV DL, Ox5

0x7c90005a eh00 JMP 0x7c¢90005c¢

0x7¢c90005¢c 52 PUSH EDX

0x7c90005d e804000000 CALL 0x7c900066

0x7¢c900062 f20094005aff2269 ADD [EAX+EAX+0x6922ff5a], DL
0x7c90006a 6e OUTS DX, BYTE [ESI]
0x7c90006b 20 DB 0x20

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskoskoskosk sk skosko sk koskoskoskoskoskoskoskoskoskoskosk sk ok sk sk sk sk ok k k sk k sk sk k k k ok

Hook mode: Usermode

Hook type: NT Syscall

Process: 668 (services.exe)

Victim module: ntdll.dll (0x7c900000 - 0x7c9af000)
Function: ZwQuerySection

Hook address: 0x7c900058

Hooking module: ntdll.dll

Disassembly(0):

0x7c90d8h0 h8a7000000 MOV EAX, Oxa7
0x7c90d8b5 ba5800907c MOV EDX, 0x7c900058
0x7c90d8ba ffd2 (0. YRR 1))

0x7c90d8hc c21400 RET 0x14

Lab Examples: Detecting Kernel Rootkit

1 int syscall__ret_execve(struct pt_regs *ctx)

2 {

3 struct comm_event event = {

4 .pid = bpf_get_current_pid_tgid() >> 32,
5 .type = TYPE_RETURN,

6 };

7

8

bpf_get_current_common(&event.comm, sizeof(event.comm));

9 comm_event.perf_submit(ctx, &event, sizeof(event));
10

11 return 0;

12 }

» The eBPF programs used in our cybersecurity lab are event-driven and it
will be triggered when the kernel or an application passes a certain hook
point. There are several pre-defined hooks which include system-calls,
function entry/exit, kernel tracepoints, and network events.

» |f a predefined hook does not exist for a particular need, we should use
kernel probe (kprobe) or user probe (uprobe) to attach eBPF programs
and retrieve the data

Page = 16

Userspace Kernel

Syscall table N d
Sys_open ?Ooked_sys_read() sys_rea
Application R PR
sys_read(), |
sys_fork

// read results

Lab Examples: Detecting Kernel Rootkit

1 int syscall__ret_execve(struct pt_regs *ctx)

2 {

3 struct comm_event event = {

4 .pid = bpf_get_current_pid_tgid() >> 32,

5 .type = TYPE_RETURN,

6 };

7

8 bpf_get_current_common(&event.comm, sizeof(event.comm));
9 comm_event.perf_submit(ctx, &event, sizeof(event));
10

1 G | return 0;

12 }

= We will attach a kprobe to the Kill syscall function. Since eBPF has the
ability to record stack traces of a function call and shows what functions
were called in both user space and the kernel space, we can therefore
detect when a function or syscall has been hooked by monitoring any
suspicious function insertion.

= Our eBPF lab program is able to record the stack trace from all Kill
syscalls and print it out afterward.

Page = 18

Lab Examples: Use eBPF in network class

@work network
Qomtor monitor

user

kernel

protocol
stack

link-level
driver

link-level
driver

link-level
driver

kernel

network

= Socket filtering
— With eBPF, network traffic can be filtered by query name, DNS name, and address.

— Students provide programs of the “BPF_PROG_TYPE_XDP” type to a network interface. Then, the kernel will execute
the programs on received packets before networking stack starts processing them.

= TCP Congestion Control

— TCP congestion control using eBPF is adopted.

— TCP Tahoe algorithm is explained in detail with implementation, and other TCP congestion control algorithms such as
new Reno and Vegas are provided. Students choose at least two TCP congestion algorithms to implement and compare
the performance different network traffic setting. Then, students write a lab report to explain the observation

Page = 19

Page = 20

