
Extended Berkeley Packet Filter (ebpf)
The New Swiss Knife for Cybersecurity Education

Si Chen and Liu Cui
Computer Science Department

West Chester University of Pennsylvania
{schen, lcui}@wcupa.edu

Page § 2

Presentation Outline

§ Introduction
§ Background
§ System Overview
§ Comparison
§ Lab Examples

Page § 3

Introduction

§ It is very challenging to do hands-on projects involving complex Linux
kernel modification in cybersecurity courses, such as pawning a Linux
kernel and hooking system calls.

§ To solve this problem, we have developed a cybersecurity learning
system named BadgerCTF+.
– Leverages the Extended Berkeley Packet Filter (eBPF) technology to support

just-in-time kernel hooking.

§ With BadgerCTF+, we can develop various hands-on cybersecurity labs,
including system calls and processes hijacking, attacking interrupts, and
kernel tracing.

Page § 4

The “Ring”

System Call à
WinAPI (Windows)

Page § 5

Background

The kernel programming projects provide crucial hands-on experience
for helping the student understand operating system concepts and
advanced cybersecurity topics such as system calls, process hook,
interrupt, and kernel memory management.

Developing a pedagogically-effective programming
project in the context of a complex Linux kernel
codebase can be a challenge:
1. Linux kernel has been developed and maintained for

more than 30 years and is already settled in design.
2. The sheer size of the kernel system makes it difficult

to understand.
3. The production operating systems are also not

primarily designed as teaching tools -- any changes
students make might break the whole system

Page § 6

Background

Berkeley Packet Filter (BPF) was first developed in 1992. It is a virtual machine (VM) in the Linux kernel, allowing a
privileged user to load and run bytecode safely in the kernel and monitor some chosen events.

Since version 3.18 of the Linux kernel, the BPF VM has been extended with a new name eBPF(extended BPF). In order
to trigger a BPF program, one needs to attach it to one or more probes (e.g., kprobe or uprobe).

Page § 7

Background

We maintain that eBPF is a natural fit for a cybersecurity learning
system, for several reasons:
• Hooking is done in the kernel space, thus is able to hook high

privilege processes.
• The verifier automatically verifies the eBPF code before being

inserted to the kernel, and prevent programming errors which
may cause kernel crashes, hangs, or instability.

• eBPF programs can be triggered by user or kernel land probes,
allowing a single mechanism to intercept all system events.

• eBPF is able to provide context about the events, including
arguments, process id, user id, timestamp and more.

• eBPF supports event filtering in the kernel, saving the need to
send and parse irrelevant event in the userspace (ring 3).

• It is possible to use eBPF to read and write data from kernel space
to user space memory, hence arguments can be read and even
changed.

• System overhead is relatively small as all the eBPF code are
compiled to native code and are running inside kernel space.

• eBPF is now maintained as part of the Linux kernel and new
features are constantly being added to it.

Page § 8

System Overview

User Space
(Ring 3)

Kernel Space
(Ring 0)

Kernel Related
Security Labs

Execute

Verifiy

Result

BadgerCTF+

The core part of the BadgerCTF+ system is a pre-configured docker container. Users
(student and teacher) can connect to the BadgerCTF+ system via a secure shell (SSH)
program.
Once connected via SSH, the BadgerCTF+ system will automatically spawn a new
container and let the user attach to it. To make sure user’s homework can be saved
and synchronized, BadgerCTF+ will automatically mount user’s home folder to the
container. Once user disconnect via SSH, that container will be destroyed.

Page § 9

System Overview

User Space
(Ring 3)

Kernel Space
(Ring 0)

Kernel Related
Security Labs

Execute

Verifiy

Result

BadgerCTF+

We use eBPF to build several kernel related security labs. These Linux kernel
programming labs are developed via pseudo-C code and compiled into eBPF
byte code via LLVM compiler. Student and teacher do not need to use eBPF
directly, instead, they can use the Python script as an abstraction layer to
interact with the built-in eBPF program.

Page § 10

System Overview

filter program@ring3 filter program@ring0

Page § 11

System Overview

Our lab’s Python script will create a new system-level hook to gather information
in the kernel land. Once the desired hook has been identified, the eBPF program
can be loaded into the Linux kernel via the eBPF system call. This is typically done
using one of the available eBPF libraries. As our lab program is loaded into the
Linux kernel, it passes through two steps before being attached to the request hook:

1. Verification: the verification process ensures that the eBPF program is
safe to run. The verifier will validate that the program meets several
conditions.

2. JIT Compilation: The Just-in-Time (JIT) compilation process translates
the generic bytecode of the program into the machine specific instruction
set to optimize the overall running performance of the program.

User Space
(Ring 3)

Kernel Space
(Ring 0)

Kernel Related
Security Labs

Execute

Verifiy

Result

BadgerCTF+

Page § 12

System Overview

eBPF maps

To return the result back to user space
(ring3), our system utilized a concept
named eBPF maps.

eBPF maps allows sharing date between
our lab’s eBPF kernel programs and also
between kernel (ring0) and user-space
(ring3) applications.

The eBPF maps are generic data structure
for storage of different data types and are
treated as binary blobs. We specify the
size of the key and the size of the value at
map-creation time inside our lab’s eBPF
program.
The map handles are file descriptors and
multiple maps can be created and
accessed by multiple users/programs at
the same time.

Page § 13

Comparison of Techniques for Teaching Linux Kernel

Monitor all
system

interactions

No system
modification

No application
modification

Easy to
develop Safe

Loadable Kernel
Module (LKM) N N Y N N

Application
Modification N Y N N N

Library Injection N Y Y Y N

Kernel eBPF
(BadgerCTF+) Y Y Y Y Y

Table 1:
Comparison of
Techniques for
Teaching Linux
Kernel

Comparison of Techniques for Teaching Linux Kernel

By relying on the eBPF technology of the Linux kernel, BadgerCTF+ achieves some
of the desired requirements. BadgerCTF+ is able to trace almost any part of the Linux
system kernel. It can log Linux API, native library functions, system calls and internal
kernel functions. By collection all context levels of an application in a unified manner,
BadgerCTF+ is able to provide a bunch of programming interface which can be
directly used by the student for secondary development.

Page § 14

Lab Examples: Detecting Kernel Rootkit

§ A kernel rootkit is a malicious software that runs inside the kernel space to create a
backdoor to a system without being detected.

§ It can be de deployed onto a system via a worm, or an attacker can use a kernel
vulnerability.

§ Because kernel rootkit involves compromising the kernel, they can basically do anything,
including avoiding detection by other software.

§ A common technique of Linux kernel rootkit is to overwrite the function addresses inside the
syscall table.

§ Syscalls are the main way userland applications interact with the kernel and underlying
hardware. By hooking (or ‘altering’) the syscall table, rootkit can change the data reported by
the kernel to hide anything incriminating, such as its own process or a network connection to
a command and control (C&C) server.

Page § 15

Lab Examples: Detecting Kernel Rootkit

For CSC 471: modern malware
analysis class. The topics is for
detecting kernel rootkit.

It is difficult to teach topics like
kernel rootkit due to it complex
nature.

Page § 16

Lab Examples: Detecting Kernel Rootkit

§ The eBPF programs used in our cybersecurity lab are event-driven and it
will be triggered when the kernel or an application passes a certain hook
point. There are several pre-defined hooks which include system-calls,
function entry/exit, kernel tracepoints, and network events.

§ If a predefined hook does not exist for a particular need, we should use
kernel probe (kprobe) or user probe (uprobe) to attach eBPF programs
and retrieve the data

Page § 17

Page § 18

Lab Examples: Detecting Kernel Rootkit

§ We will attach a kprobe to the Kill syscall function. Since eBPF has the
ability to record stack traces of a function call and shows what functions
were called in both user space and the kernel space, we can therefore
detect when a function or syscall has been hooked by monitoring any
suspicious function insertion.

§ Our eBPF lab program is able to record the stack trace from all Kill
syscalls and print it out afterward.

Page § 19

Lab Examples: Use eBPF in network class

§ Socket filtering
– With eBPF, network traffic can be filtered by query name, DNS name, and address.
– Students provide programs of the “BPF_PROG_TYPE_XDP” type to a network interface. Then, the kernel will execute

the programs on received packets before networking stack starts processing them.

§ TCP Congestion Control
– TCP congestion control using eBPF is adopted.
– TCP Tahoe algorithm is explained in detail with implementation, and other TCP congestion control algorithms such as

new Reno and Vegas are provided. Students choose at least two TCP congestion algorithms to implement and compare
the performance different network traffic setting. Then, students write a lab report to explain the observation

Page § 20

